QCD lecture 15c

January 25



Nonlinear realization
of SU(N) x SU(N)

We can parametrize SU(N) matrix as U(z) = exp (L@l(;))
0

where for SU(2)

E TC)(J) — ®3 L — 7TO \/§7T+
= SN 1+ 19 — 3 — X NI —a®
e

or for SU(3)
¢3 + fC)s O1 — 1Py Py — iy
= M b = ¢1+id2  —¢3+ \/—08 D6 — 17
G4 + iy G + 1Q7 \/—C)s
0 + %7} \/§7r+ V2K+
vVor—  —ml+ \/—77 V2K°
[there exist different conventions \/§K_ \/>KO = %77

for signs of particle fields]



Nonlinear realization
of SU(N) x SU(N)

Define M; = {U : M* — SU(N)|U(x) = exp (z‘@]&x)>}
0

The homomorphism

©:Gx My — M; with o[(L, R),U](z) = RU(z)L?

defines an operation of G on M,
1. RUL' € M3, since U € M3 and R, L' € SU(N).
2. @[(1N><N; 1N><N): U]( ) — 1N><NU( )1N><N . U(I)-

3. Let g; = (Ls, R;) € G and thus g190 = (L1Lo, R1Ry) € G.
el eloe, Ull(x) = @lgr, (RULY)(x) = RiRoU () LYLY,
0lg1g2,Ul(x) = RiRU(z)(L1Ly)' =R ROU(JJ)L;LI-

all group requirements are fulfilled. This mapping is called nonlinear because M3
is not a vector space (sum of two U matrices is not a unitary matrix).



Nonlinear realization
of SU(N) x SU(N)

The origin (vacuum) correspondsto ¢(z) =0 ,i.e. Uy =1
Indeed Gl=1VNl] = Y =1
olg=(4,A1),1] = AtAt#£1
Axial symmetry is broken, left and right fermions must be transformed the same way.

Transformation of fieds ¢(z) & 52
I -
FO QFO

, , Ao X
and transformation matrix V' = exp <_@@(‘l/?> give

- he SU 3
b = \pdp B)v VoVl = ¢p—iQY [— O] + - - = D+ fapcOF PpAet- -

‘—,_/
@b/lfabc c
Fields ¢(x) transform according to the adjoint rep. of SU(3) (like gaue fields...)



Effective lagrangian

Matrix U is our "building block". Langrangian must be symmetric under global

SUB)xSURRx Uy Ulw) = RU@)LT Ul@) = exp (¢1(PI)>

The most general lagrangian with two derivatives (Weinberg lagrangian)

FO2 LT7YT
Lo = —Tr (9,U0U)

where (experimentally) Fy ~ 93 MeV can be deduced from 7" — pty,

Invariance:

U — RUL' 8,U — ROUL' U' — LU'R' 8,U' — LOU'R

2 2
Low— “LTe(RO,ULILOU'RY) = “2Tr( BIBO,UPUY) = Lea,

1 1



Effective lagrangian

Expanding U =1+ igb/FS + ‘oo QLU — iaﬂqb/Fo I, 5
B B 10,9 10M 1 .
‘Ceff — ZTI [ FO = FO + 0= ZTI()\aﬁngf)a)\bﬁ ¢b) + ..
1 1

- Zaﬂqﬁaﬁ“qﬁbTr()\a)\b) S 5%@%8"’@% + Lint

we get usual lagrangian plus interactions that proceed only through derivatives
(momenta). For small momenta higher derivative terms are small. Interactions

are even in @q Parity
Cba(ft) ol _@a(_ft) U(‘Ft> H UT(—.Z_IL)

This lagrangian is unigue up to total derivatives. E.g.:

Tr[(0,0U)UT] = 9,[Tr(a*UU)] — Tr(0"Ud,U")

Single derivatives vanish under trace Tr(aNUUT) =



Currents

Left currents. Set ©f = 0 and make left transformation space-time dependent:
Oy = 6;(z)

Aa
Then U — U =RUL'=U (1 + i@L—>

2
/ : L)‘a : L)‘a
6‘LU —> aﬂU = OMU 1 —*— Z@a7 —|— Uzaﬂ@ai
l I -- L Aa t_ . LA t
o,U" — 9,U"7 = 1—7,@@? 0, U —z@lt@aiU
. F? A A
and: 0 = TOTr [Uz'é)#@ﬁ’;é)“w +0,U (—z’@“@{;?ﬂmﬂ
FOQ- L A .
= Tzﬁﬂ@aTr 7(8’(] U-U'0"U)| < p~UTU = —UO*U
F§ L .
= Izau@a Tr ()\aa“U U) .
Left current: 56L P
Jote = o (T im0 SOTR

90,0L ~ "4



Currents

Left currents. Set ©f = 0 and make left transformation space-time dependent:
Oy = 6;(z)

Aa
Then U +— UE:RULH:U(ﬁ+¢@@—>

2
/ : L)‘a : L)‘a
6‘LU —> aﬂU = OMU 1 —*— Z@a7 —|— Uzaﬂ@ai
l I -- L Aa t_ . LA t
o, U" — 9, U7 = 1—z@a? 0, U —z@lt@aiU
: F? A A
and: Ol = IOTI [Uié)#@g’;a“UT +0,U (—i@"@{;?ﬂU*)]
FOQ- L N + t
= Izﬁﬂ@aTr 7(0’(] U-U'0"U)| < p~UTU = —UO*U
Fg . L t
= Izau@a Tr ()\aa“U U) .
Left current: 56L P Right current: 561 o
ma — M i TOy (A OHUTD) JB = = = 20Ty (A UBHUT
JT 59,61 7 1 Th ()\aa U U) R 99,07 7 1 1( i )



Currents

We can now calculate vector and axial currents:
F2

J = FENE Y= —ZIOTr (AU, 0#UT)
l7

e = It = 0 2 Tr (AU, 0#U™})

Internal parity:

2z 2
= PE —Z&Tr[)\ (UtorU — o*UTM)
2
#UNU = —Uto*U = 4%HNMFWUW+UWWHIAT
o 2
Jua P20 —i%Tr[/\a(U*@“UJr6”’UUT)]
FQ

= i T (OUU + VU] = T3



Matrix elemen of axial current

Fg

Axial current J4" = —7—T1 ()\ {U, (9”UT})

. Fz MO D ,
expanding: J = o | Rl - s, il L + .. = —Fyo' ¢, +
4 Fy

Matrix element of axial current between GB and vacuum:
O1J8@) |6 () = —Fo (0] ¢°(x) |6' ()
d4p/
= =K Jle 02l 6b
0/(2%) <|@ 4 }9 ])

"

=(2m)45™) (p'—p) 5‘“’
= iple PTF ™.

This agrees with previous result from QCD

(0]47,(0)[¢"(p)) = ipFod™



Mass term

In QCD e D D
Ly =—qrMar, — @ M'qr, M= 0 myq 0
0 0 m,

This would be invariantif M — RMLT

What is the effective lagrangian that respects this would be symmetry? To the lowest

orderin M

F?B
Laop. = ——Tr(MU' + UMY

where By is a new parameter. This means that the ground state (U = 1)
energy density is

) = —FOQBO(mu + mg + m)

In QCD 8<O|HQCD|O>

om,

- %<O|(YCI|O>0 = %@D

My=mg=ms=0

and we have ~
3F7By = —(dq)



Mass term

_ F§By

B, Te(MU' + UMT) 3FyBo = —(qq)

Constant By has dimension 1 (energy).

()
Fo

) gives L,y = —%Tr(qbQM) s

Expanding U(z) = exp (z

Using s w+ =n V2t V2KY
o(z) = ) tul®)=| V2~ -7+ Zn V2KO
a=1 V2K~ V2K° —%7}

one gets

Te(>M) = 2(my +mg)ntr™ 4+ 2(my + my) KTK™ 4+ 2(mg + my) K°K°

o My + Mg + 4mg
+(my, + md)7r07r0 + —(my, — md)7r07] -+ ; -

V3

mixing



Mass term

Te(°M) = 2(my +mg)nTn™ + 2(my + m)KTK™ + 2(mg + m, ) K°K°

2 u + Mg + 4m,
+ (M + mg) 070 + —=(my — mg)mOn + & m; i n°.

V3

Isospin symmetric limit m, = mqg= m

By

e —7T1'(¢QM) implies the following meson masses
M? = 2Bym,
M = Bo(m+my), where By = —(qq)/(3FF)

j\,.jg = %BO (m =+ 2m,)

Gell-Mann — Okubo mass relation (does not depend on By )

4AMZ = 4Bo(m + my) = 2Bo(m + 2my) + 2Bym = 3M?2 + M?

L = 4x494°>=976144MeV? R = 3 x 5482 + 1382 = 919956 MeV?2



Mass term

Te(°M) = 2(my +mg)nTn™ + 2(my + m)KTK™ + 2(mg + m, ) K°K°

2 My, + myg +4my,
+(my + ma) 7’ + —=(my — ma)7’n + ; 4

V3

Isospin symmetric limit m, = mg = m

By

e —TTr(qbQM) implies the following meson masses
M? = 2Bym,
Mf = Bo(m+ms), where By = —(qq)/(3FF)

]\Jg = %BO (m + 2m)

L—-R

Gell-Mann — Okubo mass relation (does not depend on B ) =

L+R
4M3 = 4Bo(m + m,) = 2Bo(m + 2m,) + 2Bym = 3]\«13 + M?

L = 4x494°>=976144MeV? R = 3 x 5482 + 1382 = 919956 MeV?2



PCAC
partially conserved axial current

Let's calculate

Bk 3
O @1®) = [ o g™ Olauk)y@n 2Eal) 0

~ [ \/; =2 (0 4, (k)al(p) [0)

- Oab —ip-x

Every field that has this property is called interpolating field.
Let's consider isospin subgroup of SU(3). Axial current matrix element

(0] A% (x)7;(q)) = iq" Foe™* %5y
Let's take its divergence

(010,45 () |75(q))

z'q"F()@“e_iq"""éij = ]\[gFo@_Zq:F(SZJ — QTTZqBoF()@_Z'q'ICSij

This means that divergence of the axial current, up to a constant, is itself pion
interpolating field. On the other hand 3“145 = img (qTiY5q) = Mg
so pseudoscalar density is also a pion interpolating field



PCAC
partially conserved axial current

Let's calculate

0|¢a |Q§b s dgk 1 —ik-x 0 9 32E ]
0) = [ e ™ Olak)y/n) 2B

- /d@ (0] aa(k)al(p) [0)

ab —zp T

Every field that has this property is called interpolating field.
Let's consider isospin subgroup of SU(3). Axial current matrix element

(0] A% (2)|mj(q)) = ig" Foe ™" _2mq (79)
Let's take its divergence

3 I
(010, AL (x)|m;(q)) iq“FoﬁlLe_iq'Iéij — ]\L%Foe_iq'zéij = 2‘771qBOF0€_iq'I5ij

This means that divergence of the axial current, up to a constant, is itself pion
interpolating field. On the other hand 3“145 = img (qTiY5q) = Mg
so pseudoscalar density is also a pion interpolating field



Chiral lagrangian

_F
4

F2B,

e 2

T (0,000 + D (MUt 1 UM)  Ue) = exp (W’”)

Fo

Chiral lagrangian is expressed in terms of a U field

8 4+ 2n V2t V2K
o(@) = D data(z)=| V21 -+ V2K°
a=1 \/§K_ \/§KO _%"7

* Nonzero quark condensate in chiral limit is a sufficient cond. for a spotaneus xSB

* Quark mass term gives masses to GBs

e Gell-Mann — Okubo mass formula emerges — satisfied experimentally

* Terms with more derivetives and with higher powers of M are possible

e Such theory is not renormalizable, but there is a method to make it predictive:
chiral perturbation theory

* Coupling to photons, W and Z by covariant derivatives



Chiral perturbation theory

Effective lagrangian

FQ
Lo =

.)\.¢> 4

Tr (0,U0"UY)
U = exp (2 7

up to 4 fields in SU(2)

1
2@ _
¢ e

(Oup - b) (0") - &) — (Ouep - 0"b) (¢ - )}

Terms with more derivatives (adding weak and elm. interactions via covariant derivative)
2
Ey = Iy {Tr (B#,Ué)“UT) } + Lo Tr (ONUO,,UT) Le (c‘?“U@”UT)
+Ls Tr (BHUO“‘UTQ,,UO”UT) + ...

Coefficients L, are free, have to be extracted from data.



Weinberg counting — tree level

time
Scattering from 2-derivative term
M (p1,p2,P3,P1) ~ (P1 + p2) - (P3 + Pa) — P1 - P2 — P3 - Pa. @
1294 P

rescale all momenta:

p—1ip

M (])1:])21])3:])4) i ILQM (])17])2:])3:])4)



Weinberg counting — one loop

S
-

time

logarithmically
divergent

Migp o /dllk (p1+p2) - (p1 +p2) —p1-p2— (p1 +p2 — k) - k]
1 1

k2 —m? (p1+ p2 — k)?> — m?
[(P1+p2) - (P3 + 1) — (P1 + P2 — k) - k — p3 - p4



Weinberg counting — one loop

S
-

time

logarithmically
divergent

p1+pp__ k
rescale pi = tpi, m —tm, k — tq

vertices props integration

LT <
Mloop B t t t
/d4l [(p1 +p2) - (1 +P2) —pP1-P2— (P1+p2—1) -]
1 1
k2 —m2 (py + po — )2 — m?

[(p1 +p2) - (p3s +pa) — (p1 +p2 —k) -1 — ps - 4]




Weinberg counting — one loop

S
-

time
- Py
logarithmically .
divergent \
DA’
p1+p3_ k
rescale pi = tpi, m —tm, k — tq

4
M]oop % t MlOOp



Weinberg counting — one loop

time

logarithmically
divergent

Mioop — t4M100p ’ PPy k t
This means that the divergence enters at the level of four derivative terms. So it "renor-
malizes" coefficients [; rather than the coefficeints following from L£s. Hence we can
absorb these divergences to unrenormalized (bare) constants L; — L!. When we calcu-
late loop corrections involving vertices from £, (i.e. involving renormalized constants L)
new divernces appear, but they affect some new couplings with higher number of deriva-
tives, but not L!’s themselves. This theory is opperative at low energies, so we typcyally
stop at the four derivative level (corresponding to p?). This scheme is known as chiral

perturbation theory and the resacling procedure introduced above is known as Weinberg

power counting.



