QCD lecture 15a

January 18

Current commutators

Full list:

 $[V_0^a(\vec{x},t), V_b^\mu(\vec{y},t)] = \delta^3(\vec{x}-\vec{y})if_{abc}V_c^\mu(\vec{x},t),$ $[V_0^a(\vec{x},t), V^\mu(\vec{y},t)] = 0,$ $[V_0^a(\vec{x},t), A_b^{\mu}(\vec{y},t)] = \delta^3(\vec{x}-\vec{y})if_{abc}A_c^{\mu}(\vec{x},t),$ $[V_0^a(\vec{x},t), S_b(\vec{y},t)] = \delta^3(\vec{x}-\vec{y})if_{abc}S_c(\vec{x},t),$ $[V_0^a(\vec{x},t), S_0(\vec{y},t)] = 0,$ $[V_0^a(\vec{x},t), P_b(\vec{y},t)] = \delta^3(\vec{x}-\vec{y})if_{abc}P_c(\vec{x},t),$ $[V_0^a(\vec{x},t), P_0(\vec{y},t)] = 0,$ $[A_0^a(\vec{x},t), V_b^\mu(\vec{y},t)] = \delta^3(\vec{x}-\vec{y})if_{abc}A_c^\mu(\vec{x},t),$ $[A_0^a(\vec{x},t), V^{\mu}(\vec{y},t)] = 0,$ $[A_0^a(\vec{x},t), A_b^\mu(\vec{y},t)] = \delta^3(\vec{x}-\vec{y})if_{abc}V_c^\mu(\vec{x},t),$ $[A_0^a(\vec{x},t), S_b(\vec{y},t)] = \delta^3(\vec{x}-\vec{y})if_{abc}P_c(\vec{x},t),$ $[A_0^a(\vec{x},t), S_0(\vec{y},t)] = 0,$ $[A_0^a(\vec{x},t), P_b(\vec{y},t)] = \delta^3(\vec{x}-\vec{y})if_{abc}S_c(\vec{x},t),$ $[A_0^a(\vec{x},t), P_0(\vec{y},t)] = 0.$

QCD spectrum

Both vector and axial charges commute with QCD (massless) hamiltonian H_{QCD}^0 therefore the eigenstates organize themselves into irreducible representations of the chiral group $SU(3)_L \times SU(3)_R \times U(1)_V$ (axial U(1) is broken by anomaly). States within each multiplet are (nearly) degenarate in mass and have well defined baryon number ($U(1)_V$ ensures baryon number conservation). Since axial and vector charges have opposite parity, one would expect that multiplets of opposite parity are degenerate in mass.

For positive parity states: (e.g. baryon or meson ground sates)

$$H^{0}_{\text{QCD}}|i,+\rangle = E_{i}|i,+\rangle$$
$$P|i,+\rangle = +|i,+\rangle$$

Define now* $|\phi\rangle = Q^a_A |i,+\rangle$ and calculate its mass. Because $[H^0_{\rm QCD},Q^a_A] = 0$

$$H^{0}_{\text{QCD}}|\phi\rangle = H^{0}_{\text{QCD}}Q^{a}_{A}|i,+\rangle = Q^{a}_{A}H^{0}_{\text{QCD}}|i,+\rangle = E_{i}Q^{a}_{A}|i,+\rangle = E_{i}|\phi\rangle$$

so the new state has the same energy (mass) but opposite parity

$$P|\phi\rangle = PQ_A^a P^{-1}P|i, +\rangle = -Q_A^a(+|i, +\rangle) = -|\phi\rangle$$

*charges and generators transforming Hilbert space states are identical (lecture 14)

QCD spectrum

State $|\phi\rangle$ can be expanded in the basis of negative parity multiplet (in fact generators are Clebsch-Gordan coefficients)

$$|\phi\rangle = Q^a_A |i, +\rangle = -t^a_{ij} |j, -\rangle$$

But such degeneracy of opposite parity states is not seen in Nature.

$n^{2s+1}\ell_J$	J^{PC}	I = 1	$I = \frac{1}{2}$	= 0	I = 0	$\theta_{ ext{quad}}$	$ heta_{ m lin}$
		$uar{d},ar{u}d,$	$u\bar{s}, d\bar{s};$	f'	f	[°]	[°]
		$\frac{1}{\sqrt{2}}(d\bar{d}-u\bar{u})$	$ar{d}s,ar{u}s$				
$1^{1}S_{0}$	0^{-+}	$\pi(138)$	K (494)	η (548)	$\eta'(958)$	-11.3	-24.5
$1^{3}S_{1}$	1	ho(770)	$K^{*}(892)$	$\phi(1020)$	$\omega(782)$	39.2	36.5
$1^{1}P_{1}$	1+-	$b_1(1235)$	K_{1B}^{\dagger}	$h_1(1415)$	$h_1(1170)$		
$1^{3}P_{0}$	0^{++}	$a_0(1450)$	$K_{0}^{*}(1430)$	$f_0(1710)$	$f_0(1370)$		
$1^{3}P_{1}$	1^{++}	$a_1(1260)$	K_{1A}^{\dagger}	$f_1(1420)$	$f_1(1285)$		
$1^{3}P_{2}$	2^{++}	$a_2(1320)$	$K_{2}^{*}(1430)$	$f_2'(1525)$	$f_2(1270)$	29.6	28.0
$1^{1}D_{2}$	2^{-+}	$\pi_2(1670)$	$K_2(1770)^\dagger$	$\eta_2(1870)$	$\eta_2(1645)$		
$1^{3}D_{1}$	1	ho(1700)	$K^*(1680)^\ddagger$		$\omega(1650)$		
$1^{3}D_{2}$	2		$K_2(1820)^\dagger$				
$1^{3}D_{3}$	3	$ ho_3(1690)$	$K_{3}^{*}(1780)$	$\phi_3(1850)$	$\omega_3(1670)$	31.8	30.8
1^3F_4	4^{++}	$a_4(1970)$	$K_{4}^{*}(2045)$	$f_4(2300)$	$f_4(2050)$		
$1^{3}G_{5}$	5	$ \rho_{5}(2350) $	$K_{5}^{*}(2380)$				
$2^{1}S_{0}$	0-+	$\pi(1300)$	K(1460)	$\eta(1475)$	$\eta(1295)$		
$2^{3}S_{1}$	1	ho(1450)	$K^*(1410)^{\ddagger}$	$\phi(1680)$	$\omega(1420)$		
$2^{3}P_{1}$	1++	$a_1(1640)$					
$2^{3}P_{2}$	2^{++}	$a_2(1700)$	$K_{2}^{*}(1980)$	$f_2(1950)$	$f_2(1640)$		

J^P	(D, L_N^P)	S	Octet members				Singlets
$1/2^{+}$	$(56,0^+_0)$	1/2	N(939)	$\Lambda(1116)$	$\Sigma(1193)$	$\Xi(1318)$	
$1/2^{+}$	$(56,0^+_2)$	1/2	N(1440)	$\Lambda(1600)$	$\Sigma(1660)$	$\Xi(1690)^{\dagger}$	
$1/2^{-}$	$(70,1^{-}_{1})$	1/2	N(1535)	$\Lambda(1670)$	$\Sigma(1620)$	$\Xi(?)$	$\Lambda(1405)$
					$\Sigma(1560)^{\dagger}$		
$3/2^{-}$	$(70,1^{-}_{1})$	1/2	N(1520)	A(1690)	$\Sigma(1670)$	$\Xi(1820)$	$\Lambda(1520)$
$1/2^{-}$	$(70,1^{-}_{1})$	3/2	N(1650)	$\Lambda(1800)$	$\Sigma(1750)$	$\Xi(?)$	
					$\Sigma(1620)^{\dagger}$		
$3/2^{-}$	$(70,1^{-}_{1})$	3/2	N(1700)	$\Lambda(?)$	$\Sigma(1940)^{\dagger}$	$\Xi(?)$	
$5/2^{-}$	$(70,1^{-}_{1})$	3/2	N(1675)	$\Lambda(1830)$	$\Sigma(1775)$	$\Xi(1950)^{\dagger}$	
$1/2^{+}$	$(70,0^+_2)$	1/2	N(1710)	$\Lambda(1810)$	$\Sigma(1880)$	$\Xi(?)$	$\Lambda(1810)$
$3/2^{+}$	$(56,2^+_2)$	1/2	N(1720)	$\Lambda(1890)$	$\Sigma(?)$	$\Xi(?)$	16 10
$5/2^{+}$	$(56,2^+_2)$	1/2	N(1680)	$\Lambda(1820)$	$\Sigma(1915)$	$\Xi(2030)$	
$7/2^{-}$	$(70, 3^{-}_{3})$	1/2	N(2190)	$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	$\Lambda(2100)$
9/2-	$(70, 3^{-}_{3})$	3/2	N(2250)	$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	
$9/2^{+}$	$(56, 4^+_4)$	1/2	N(2220)	A(2350)	$\Sigma(?)$	$\Xi(?)$	

Spontaneous χSB

What was wrong with the previous argument? We have tacitly assumed that the ground state of QCD (vacuum) is annihilated by Q_A^a

To show this, consider a creation operator asociated with positive parity fields a_i^{\dagger} creating positive parity state $|i, +\rangle$ and b_j^{\dagger} creates quanta of opposite parity. States $|i, +\rangle$ and $|j, -\rangle$ are basis states of an irreducible representation of $SU(3)_L \times SU(3)_R$

In analogy with (lecture 14) $[Q^a(t), \Phi_k(\vec{y}, t)] = -t^a_{kj} \Phi_j(\vec{y}, t)$

we have

$$[Q^a_A,a^\dagger_i]=-t^a_{ij}b^\dagger_j$$

Then
$$Q_A^a|i,+\rangle = Q_A^a a_i^{\dagger}|0\rangle = \left([Q_A^a, a_i^{\dagger}] + a_i^{\dagger} \underbrace{Q_A^a}_{\hookrightarrow 0} \right) |0\rangle = -t_{ij}^a b_j^{\dagger}|0\rangle$$

If axial charges annihilate vacuum then we arrive at

$$|\phi\rangle = Q^a_A |i,+\rangle = -t^a_{ij} |j,-\rangle$$

What happens when $Q_A^a |0\rangle \neq 0$?

Spontaneous χSB

Goldstone theorem:

For each charge (generator) of some symmetry group that does not annihilate vacuum there corresponds a massless particle (Goldstone boson) of parity equal to the parity of this charge. In QCD natural candidates for Goldstone bosons are: π , K and η .

In QCD $Q_V^a |0\rangle = Q_V |0\rangle = 0$ so the vacuum is invariant under $SU(3)_V \times U(1)_V$ It follows that H^0_{QCD} is also invariant (but not vice versa) and that the physical states correspond to some irreducible representations of $SU(3)_V \times U(1)_V$

To each $Q_A^a |0\rangle \neq 0$ there corresponds a massless Goldstone boson field $\phi^a(x)$ with zero spin and $\phi^a(\vec{x}, t) \stackrel{P}{\mapsto} -\phi^a(-\vec{x}, t)$

$$[Q_V^a, \phi^b(x)] = i f_{abc} \phi^c(x)$$

Quark masses break axial symmetry explicitly, so Goldstone bosons are not exactly massless.

Recall definitions

$$S_a(y) = \bar{q}(y)\lambda_a q(y), \quad a = 0, \cdots, 8,$$

$$P_a(y) = i\bar{q}(y)\gamma_5\lambda_a q(y), \quad a = 0, \cdots, 8.$$

Generic quark billinears

$$A_i(x) = q^{\dagger}(x)\hat{A}_i q(x)$$

have the following commutation rules

$$[A_1(\vec{x},t), A_2(\vec{y},t)] = \delta^3(\vec{x}-\vec{y})q^{\dagger}(x)[\hat{A}_1, \hat{A}_2]q(x)$$

Calculate commutators of vector currents $Q_V^a(t) = \int d^3x q^{\dagger}(\vec{x},t) \frac{\lambda^a}{2} q(\vec{x},t)$ with *S* and *P*

we have
$$[\frac{\lambda_a}{2}, \gamma_0 \lambda_0] = 0$$
 and $[\frac{\lambda_a}{2}, \gamma_0 \lambda_b] = \gamma_0 i f_{abc} \lambda_c$

scalar quark densities transform as a singlet and an octet (similarly pseudoscalars)

$$[Q_V^a(t), S_0(y)] = 0, \quad a = 1, \dots, 8,$$

$$[Q_V^a(t), S_b(y)] = i \sum_{c=1}^8 f_{abc} S_c(y), \quad a, b = 1, \dots, 8$$

$$[Q_V^a(t), S_b(y)] = i \sum_{c=1}^8 f_{abc} S_c(y), \quad a, b = 1, \cdots, 8,$$

One can invert this relation with the help of (recall computation of the Casimir)

$$\sum_{a,b=1}^{8} f_{abc} f_{abd} = 3\delta_{cd}$$

$$S_a(y) = -\frac{i}{3} \sum_{b,c=1}^{8} f_{abc}[Q_V^b(t), S_c(y)]$$

Because vector charges annihilate vacuum $Q_V^a |0\rangle = 0$ we have

$$\langle 0|S_a(y)|0\rangle = \langle 0|S_a(0)|0\rangle \equiv \langle S_a\rangle = 0, \quad a = 1, \cdots, 8$$

where we have used translation invariance of the ground sate:

$$e^{ipy}S(y)e^{-ipy} = S(0)$$

 $\lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\lambda_8 = \sqrt{\frac{1}{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$

From $\langle S_a \rangle = 0$ we have:

a = 3 $\langle \bar{u}u \rangle - \langle \bar{d}d \rangle = 0$ a = 8 $\langle \bar{u}u \rangle + \langle \bar{d}d \rangle - 2\langle \bar{s}s \rangle = 0$

From these eqs. we have

$$\langle \bar{u}u \rangle = \langle \bar{d}d \rangle = \langle \bar{s}s \rangle$$

Because $[Q_V^a(t), S_0(y)] = 0$, $a = 1, \dots, 8$ the same argument cannot be used for singlet condensate.

However it is clear that

$$0 \neq \langle \bar{q}q \rangle = \langle \bar{u}u + \bar{d}d + \bar{s}s \rangle = 3\langle \bar{u}u \rangle = 3\langle \bar{d}d \rangle = 3\langle \bar{s}s \rangle$$

Now we shall calculate commutator $i[Q_a^A(t), P_a(y)]$ for fixed a

This is related to

$$(i)^2[\gamma_5 \frac{\lambda_a}{2}, \gamma_0 \gamma_5 \lambda_a] = \lambda_a^2 \gamma_0$$

We have

$$\begin{split} \lambda_1^2 &= \lambda_2^2 = \lambda_3^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ \lambda_4^2 &= \lambda_5^2 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\ \lambda_6^2 &= \lambda_7^2 &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\ \lambda_8^2 &= \frac{1}{3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix} \end{split}$$

Now we shall calculate commutator $i[Q_a^A(t), P_a(y)]$ for fixed a

This is related to

$$(i)^2[\gamma_5 \frac{\lambda_a}{2}, \gamma_0 \gamma_5 \lambda_a] = \lambda_a^2 \gamma_0$$

We have (suppressing y dependence)

$$i[Q_a^A(t), P_a(y)] = \begin{cases} \bar{u}u + \bar{d}d, & a = 1, 2, 3\\ \bar{u}u + \bar{s}s, & a = 4, 5\\ \bar{d}d + \bar{s}s, & a = 6, 7\\ \frac{1}{3}(\bar{u}u + \bar{d}d + 4\bar{s}s), & a = 8 \end{cases}$$

which gives vacuum expectation value

$$\langle 0|i[Q_a^A(t), P_a(y)]|0\rangle = \frac{2}{3}\langle \bar{q}q\rangle, \quad a = 1, \cdots, 8$$

Goldstone bosons

Expectation value is non-zero and time independent

only states with zero energy conribute (time indep.) $e^{-ip_n x} = e^{-i(p_n^0 t - p_n x)}$

$$\langle 0|i[Q_a^A(t), P_a]|0\rangle = \frac{i}{2}\lim_{p^0 \to 0} \sum_b \int \frac{d^3p}{(2\pi)^3} \int d^3x \left\{ e^{i\boldsymbol{p}\boldsymbol{x}} \frac{\langle 0|A_a^0|\phi^b\rangle}{p^0} \left\langle \phi^b \right| P_a|0\rangle - \text{h.c.} \right\}$$

Integral over d^3x gives Dirac delta, which eats up integration over d^3p

$$\begin{aligned} & \left\{ O\left|i[Q_{a}^{A}(t),P_{a}]\right|0\right\rangle = \frac{i}{2}\lim_{p^{0}\to 0}\sum_{b}\left\{ \frac{\left\langle 0\right|A_{a}^{0}\left|\phi^{b}\right\rangle}{p^{0}}\left\langle\phi^{b}\right|P_{a}\left|0\right\rangle - \left\langle 0\right|P_{a}\left|\phi^{b}\right\rangle\frac{\left\langle\phi^{b}\right|A_{a}^{0}\left|0\right\rangle}{p^{0}}\right\} \end{aligned}$$

From hermicity and Lorentz invariance $\langle 0 | A^{\mu}_{a} | \phi^{b}(p) \rangle = i p^{\mu} F_{\phi} \delta^{ab}$

and we get

$$\langle 0 | i[Q_a^A(t), P_a] | 0 \rangle = -F_\phi \langle \phi^a | P_a | 0 \rangle = \frac{2}{3} \langle \bar{q}q \rangle$$

Here F_{ϕ} is Goldstone boson (pion) decay constant. Its value is ~ 93 MeV (different normalizations).

- There must exist states for which $\langle 0 | A_a^0(0) | n \rangle$ and $\langle 0 | P_a | n \rangle$ are non-zero
- It is not vacuum, because $\langle 0 | P_a | 0 \rangle = 0$
- Energy of these states must vanish, because the quark condendate is time independent
- So we need $E_n = 0$
- Such states are massless Goldstone bosons $\ket{\phi^b}$
- GBs are (pseudo)scalars still to be proven