QCD lecture 10

November 30

Functional integral for scalar field

One can easily translate the QM functional formalism to QFT with the help of the following correspondence

$q(t)$	\longleftrightarrow	$\phi(x)$
$p(t)$	\longleftrightarrow	$\Pi(x)$
$j(t)$	\longleftrightarrow	$j(x)$

and the analogue of the generating functional reads

$$
\begin{aligned}
Z[j]= & \int[D \Pi(x) D \phi(x)] \\
& \times \exp \left\{i \int d^{4} x\left(\Pi(x) \dot{\phi}(x)-\left(1-i 0^{+}\right) \mathcal{H}(\Pi, \phi)+j(x) \phi(x)\right)\right\}
\end{aligned}
$$

The hamiltonian reads

$$
\mathcal{H}=\frac{1}{2} \Pi^{2}+\frac{1}{2}(\nabla \phi) \cdot(\nabla \phi)+\frac{1}{2} m^{2} \phi^{2}+V(\phi)
$$

and can be obtained from the Lagrangian

$$
\mathcal{L}=\int d^{3} x\left\{\frac{1}{2}\left(\partial_{\mu} \phi(x)\right)\left(\partial^{\mu} \phi(x)\right)-\frac{1}{2} m^{2} \phi^{2}(x)\right\}
$$

Functional integral for scalar field

Since the hamiltonian is quadratic in Π we can perform Gaussian integral

$$
Z[j]=\int[D \phi(x)] \exp \left\{i \int d^{4} x(\mathcal{L}(\phi)+j(x) \phi(x))\right\}
$$

where

$$
\mathcal{L}(\phi) \equiv \frac{1}{2}\left(1+\mathfrak{i} 0^{+}\right) \dot{\phi}^{2}-\frac{1}{2}\left(1-\mathfrak{i} 0^{+}\right)\left((\nabla \phi) \cdot(\nabla \phi)+\mathfrak{m}^{2} \phi^{2}\right)-\left(1-\mathfrak{i} 0^{+}\right) V(\phi)
$$

Note that $\quad 1-i 0^{+}$in front of V plays no role if interaction vanishes for large times. Then

$$
Z[j]=\exp \left\{-i \int d^{4} x v\left(\frac{\delta}{i \delta j(x)}\right)\right\} Z_{0}[j]
$$

where

$$
Z_{0}[j] \equiv \int[D \phi(x)] \exp \left\{i \int d^{4} x\left(\mathcal{L}_{0}(\phi)+j(x) \phi(x)\right)\right\}
$$

and

$$
\mathcal{L}_{0}(\phi)=\frac{1}{2}\left(1+\mathfrak{i} 0^{+}\right) \dot{\phi}^{2}-\frac{1}{2}\left(1-\mathfrak{i} 0^{+}\right)\left((\nabla \phi) \cdot(\nabla \phi)+\mathfrak{m}^{2} \phi^{2}\right)
$$

Fermions

and Grassmann variables

Hermann Günther Grassmann (1809 Szczecin - 1877 Szczecin)

Fermion fields anticommute. How to take this into account in functional integral? Introduce Grassmann variables:

$$
\begin{aligned}
& \psi_{i}(i=1 \cdots N) \\
& \left\{\psi_{i}, \psi_{j}\right\}=0
\end{aligned}
$$

Linear space spanned by ψ_{i} 's is called Grassmann algebra Consider first $N=1 \quad \psi^{2}=0$
any function has a form $f(\psi)=a+\psi b$ where a is a number and $\{b, b\}=\{b, \psi\}=0$

$$
\text { so } \quad f(\psi)=a+\psi b=a-b \psi
$$

We have to define left and right derivatives $\vec{\partial}_{\psi} f(\psi)=b, \quad f(\psi) \stackrel{\leftarrow}{\partial}_{\psi}=-b$
Berezin integral: $\int d \psi \alpha f(\psi)=\alpha \int d \psi f(\psi)$ and $\int d \psi \partial_{\psi} f(\psi)=0$
The only solution consistent with these requirements $\int d \psi f(\psi)=b$

Fermions

and Grassmann variables

Hermann Günther Grassmann (1809 Szczecin - 1877 Szczecin)

Fermion fields anticommute. How to take this into account in functional integral? Introduce Grassmann variables:

$$
\begin{aligned}
& \psi_{i}(i=1 \cdots N) \\
& \left\{\psi_{i}, \psi_{j}\right\}=0
\end{aligned}
$$

Linear space spanned by ψ_{i} 's is called Grassmann algebra Consider first $N=1 \quad \psi^{2}=0$
any function has a form $f(\psi)=a+\psi b$ where a is a number and $\{b, b\}=\{b, \psi\}=0$

$$
\text { so } \quad f(\psi)=a+\psi b=a-b \psi
$$

We have to define left and right derivatives $\vec{\partial}_{\psi} f(\psi)=b, \quad f(\psi) \stackrel{\leftarrow}{\partial}_{\psi}=-b$
Berezin integral: $\int d \psi \alpha f(\psi)=\alpha \int d \psi f(\psi)$ and $\int d \psi \partial_{\psi} f(\psi)=0$
$\int d \psi 1=0$
The only solution consistent with these requirements

$$
\int d \psi f(\psi)=b \quad \int d \psi \psi=1
$$

Functions of Grassmann variables

Consider now N Grassmann variables $\quad \psi \equiv\left(\psi_{1}, \cdots, \psi_{N}\right) \quad\left\{\psi_{i}, \psi_{j}\right\}=0$
The most general function: $\quad f(\boldsymbol{\psi})=\sum_{p=0}^{N} \frac{1}{p!} \psi_{i_{1}} \psi_{i_{2}} \cdots \psi_{i_{p}} C_{i_{1} i_{2} \cdots i_{p}}$
Only linear terms in each variable are possible. Note that it must be $C_{i_{1} \ldots i_{N}} \equiv \gamma \epsilon_{i_{1} \ldots i_{N}}$ alternatively $\frac{1}{N!} \psi_{i_{1}} \cdots \psi_{i_{N}} \gamma \epsilon_{i_{1} \cdots i_{N}}=\psi_{1} \cdots \psi_{N} \gamma$
For consitency with previous definition $\int d^{N} \psi f(\boldsymbol{\psi})=\gamma$
Terms where at least one variable is missing do not contribute to the integral because Integration measure $d^{N} \psi \equiv d \psi_{N} d \psi_{N-1} \cdots d \psi_{1}$ assures that $\int d \psi 1=0$

$$
\int d^{N} \psi \psi_{1} \cdots \psi_{N}=\int d \psi_{N} \cdots(\underbrace{\int d \psi_{2}(\underbrace{\int d \psi_{1} \psi_{1}}_{1}) \psi_{2}}_{1}) \cdots \psi_{N}=1
$$

Change of variables

Consider $\quad \psi_{i} \equiv \mathrm{~J}_{\mathrm{ij}} \theta_{\mathrm{j}} \quad$ where $\quad \theta_{1} \cdots \theta_{\mathrm{N}}$ are also Grassmann variables
Last term of the function $f(\boldsymbol{\psi})$

$$
\begin{aligned}
\psi_{i_{1}} \cdots \psi_{i_{N}} \epsilon_{i_{1} \cdots i_{N}} \gamma & =\left(\mathrm{J}_{i_{1} j_{1}} \theta_{\mathfrak{j}_{1}}\right) \cdots\left(\mathrm{J}_{i_{N} j_{N}} \theta_{j_{N}}\right) \epsilon_{i_{1} \cdots i_{N}} \gamma \\
& =\operatorname{det}(\mathrm{J}) \theta_{j_{1}} \cdots \theta_{j_{N}} \epsilon_{j_{1} \cdots j_{N}} \gamma .
\end{aligned}
$$

From this we conclude

$$
\underbrace{\int \mathrm{d}^{\mathrm{N}} \boldsymbol{\psi} f(\boldsymbol{\psi})}_{\gamma}=[\operatorname{det}(\mathrm{J})]^{-1} \underbrace{\int \mathrm{~d}^{\mathrm{N}} \boldsymbol{\theta} f(\boldsymbol{\psi}(\boldsymbol{\theta}))}_{\operatorname{det}(\mathrm{J}) \gamma}
$$

(same as for scalar integral)

Gaussian integral

Consider

$$
\psi \equiv\left(\psi_{1}, \cdots, \psi_{N}\right) \quad\left\{\psi_{i}, \psi_{j}\right\}=0
$$

$I(\boldsymbol{M}) \equiv \int d^{N} \psi \exp \left(\frac{1}{2} \psi_{i} M_{i j} \psi_{j}\right)$
where M is $\mathrm{N} \times \mathrm{N}$ antisymmetric numeric matrix (real or complex). Such integral is non-zero only if N is even. For $N=2$

$$
\boldsymbol{M}=\left(\begin{array}{cc}
0 & \mu \\
-\mu & 0
\end{array}\right)
$$

Hence: $\mathrm{I}(\boldsymbol{M})=\mu=[\operatorname{det}(\boldsymbol{M})]^{1 / 2}$
For general even N we can always "diagonalize" \mathbf{M} by special orthogonal matrix

$$
\mathbf{M}=\mathbf{Q} \underbrace{\left(\begin{array}{ccccc}
0 & \mu_{1} & & & \\
-\mu_{1} & 0 & & & \\
& & 0 & \mu_{2} & \\
& & -\mu_{2} & 0 & \\
& & & & \ddots
\end{array}\right)}_{\mathbf{D}} \mathbf{Q}^{\top} \quad \text { Define } \quad \mathbf{Q}^{\top} \psi \equiv \theta
$$

Gaussian integral

After change of variables we get

$$
\mathrm{I}(\boldsymbol{M})=[\operatorname{det}(\mathbf{Q})]^{-1} \underbrace{\int \mathrm{~d}^{\mathrm{N}} \boldsymbol{\theta} \exp \left(\frac{1}{2} \boldsymbol{\theta}^{\top} \mathbf{D} \boldsymbol{\theta}\right)}_{\mu_{1} \mu_{2} \cdots=[\operatorname{det}(\mathbf{D})]^{1 / 2}}
$$

But $\quad \operatorname{det}(\mathbf{Q})=+1$ and we have

$$
\mathrm{I}(\boldsymbol{M})=[\operatorname{det}(\mathbf{D})]^{1 / 2}=[\operatorname{det}(\boldsymbol{M})]^{1 / 2}
$$

This is inverse with respect to the Gaussian integral for ordinary variables
We will also need integrals with Grassmann sources η_{i}

$$
I(\boldsymbol{M}, \boldsymbol{\eta}) \equiv \int d^{N} \boldsymbol{\psi} \exp \left(\frac{1}{2} \psi_{i} M_{i j} \psi_{j}+\eta_{i} \psi_{i}\right)
$$

Changing variables

$$
\psi_{i}^{\prime} \equiv \psi_{i}-M_{i j}^{-1} \eta_{j}
$$

we obtain

$$
\mathrm{I}(\boldsymbol{M}, \boldsymbol{\eta})=[\operatorname{det}(\boldsymbol{M})]^{1 / 2} \exp \left(-\frac{1}{2} \boldsymbol{\eta}^{\top} \boldsymbol{M}^{-1} \boldsymbol{\eta}\right)
$$

Gaussian integral for 2 N variables

Consider $\quad J(\boldsymbol{M}) \equiv \int d^{N} \xi d^{N} \psi \exp \left(\psi_{i} \mathcal{M}_{i j} \xi_{j}\right)$ where ψ and ξ are independent

Then (exercise) $\quad J(\mathbf{M})=\operatorname{det}(\mathbf{M})$

Complex Grassmann variables

Define $\quad \chi \equiv \frac{\psi+i \xi}{\sqrt{2}}, \quad \bar{\chi} \equiv \frac{\psi-i \xi}{\sqrt{2}}$ and inverse $\quad \psi=\frac{\bar{\chi}+\chi}{\sqrt{2}}, \quad \xi=\frac{i(\bar{\chi}-\chi)}{\sqrt{2}}$
Integrations $d \xi d \psi=i d \chi d \bar{\chi}$,

$$
\psi \xi=-i \bar{\chi} \chi
$$

$$
\int \mathrm{d} \chi \mathrm{~d} \bar{\chi} \bar{\chi} \chi=\int \mathrm{d} \xi \mathrm{~d} \psi \psi \xi=1 \text { which leads to } \quad \int \mathrm{d} \chi \mathrm{~d} \bar{\chi} \exp (\mu \bar{\chi} \chi)=\mu
$$

or generally

$$
\int d \chi_{N} d \bar{\chi}_{N} \cdots d \chi_{1} d \bar{\chi}_{1} \exp \left(\bar{\chi}^{\top} \boldsymbol{M} \boldsymbol{X}\right)=\operatorname{det}(\boldsymbol{M})
$$

with sources $\quad \int \mathrm{d} \chi_{N} \mathrm{~d} \bar{\chi}_{N} \cdots \mathrm{~d} \chi_{1} \mathrm{~d} \bar{\chi}_{1} \exp \left(\overline{\boldsymbol{\chi}}^{\top} \boldsymbol{M} \mathbf{X}+\overline{\boldsymbol{\eta}}^{\top} \boldsymbol{X}+\overline{\boldsymbol{\chi}}^{\top} \boldsymbol{\eta}\right)=\operatorname{det}(\boldsymbol{M}) \exp \left(-\overline{\boldsymbol{\eta}}^{\top} \mathbf{M}^{-1} \boldsymbol{\eta}\right)$

Functional integral for fermions

The functional integral reads

$$
\begin{aligned}
& Z_{0}[\bar{\eta}, \eta]=\int[D \psi(x) D \bar{\psi}(x)] \exp \left\{i \int d^{4} x(\bar{\psi}(x)(i \not \partial-m) \psi(x)\right. \\
& +\bar{\eta}(x) \psi(x)+\bar{\psi}(x) \mathfrak{\eta}(x))\}
\end{aligned}
$$

Fermionic symmetries

Consider a set of fermion fields $\boldsymbol{\psi}(x)$ (with components $\psi_{\mathfrak{n}}(x)$) interacting with a gauge potential $A_{\mu}^{a}(x)$

At this moment we do not specify the meaning of index n

- it can be color index
- it can be flavor (up, down, strange ...)
- it can be spinor index
- or some combination of the above

What is important is the unitary transformation of these fields

$$
\boldsymbol{\psi}(x) \rightarrow \mathrm{U}(x) \boldsymbol{\psi}(x) \quad \boldsymbol{\psi}^{\dagger}(x) \rightarrow \boldsymbol{\psi}^{\dagger}(x) \mathrm{U}^{\dagger}(x)
$$

Dirac conjugate: $\quad \overline{\boldsymbol{\psi}}(x) \equiv \boldsymbol{\psi}^{\dagger}(x) \gamma^{0} \rightarrow \boldsymbol{\psi}^{\dagger}(x) \mathrm{U}^{\dagger}(x) \gamma^{0}=\overline{\boldsymbol{\psi}}(x) \gamma^{0} \mathrm{U}^{\dagger}(x) \gamma^{0}$
These matrices have both fermionic and space-time indices: \bar{u}

$$
\begin{aligned}
u_{x m, y n} & \equiv \mathrm{U}_{m n}(x) \delta(x-y), \\
\bar{u}_{x m, y n} & \equiv\left(\gamma^{0} u^{\dagger}(x) \gamma^{0}\right)_{m n} \delta(x-y)
\end{aligned}
$$

Fermionic symmetries

EXAMPLE:

$$
u(x)=e^{i \alpha(x) t}
$$

where $\alpha(x) \in \mathbb{R}$ and t is hermitean matrix (generator) that carries no spinor indices.
Then multiplication is understood as (remember that $\left(\gamma^{0}\right)^{2}=1$):

$$
\begin{aligned}
(\overline{\mathcal{U}})_{x m, y n} & =\int d^{4} z \sum_{p} \bar{u}_{x m, z p} \mathcal{U}_{z p, y n} \\
& =\int d^{4} z \delta(x-z) \delta(z-y) \sum_{p}\left(e^{-i \alpha(z) t}\right)_{m p}\left(e^{i \alpha(z) t}\right)_{p n} \\
& =\delta_{m n} \delta(x-y) .
\end{aligned}
$$

This means that $\overline{\mathcal{U}} \mathcal{U}=1$ which implies that $\operatorname{det} \mathcal{U} \operatorname{det} \overline{\mathcal{U}}=1$

Since under such transformation the Grassmann integration measure changes as

$$
[\mathrm{D} \psi \mathrm{D} \bar{\psi}] \rightarrow \frac{1}{\operatorname{det}(\mathcal{U}) \operatorname{det}(\overline{\mathcal{U}})}[\mathrm{D} \psi \mathrm{D} \bar{\psi}]
$$

the measure remains invariant for this kind of unitary transformations.

Chiral transformations

Recall free Dirac equation: $(i \not \partial-m) \psi=0$
and choose chiral representations for Dirac matrices

$$
\gamma^{0}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \gamma^{i}=\left[\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right], \gamma_{5}=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

where $\gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$
Then Dirac equation can be rewritten as a set of two interconnected equations

$$
\left(i \partial_{t}-i \boldsymbol{\sigma} \cdot \boldsymbol{\nabla}\right) \psi_{L}-m \psi_{R}=0, \quad\left(i \partial_{t}+i \boldsymbol{\sigma} \cdot \boldsymbol{\nabla}\right) \psi_{R}-m \psi_{L}=0
$$

where a four component bispinor has been decomposed into two two component Weyl spinors

$$
\psi=\left[\begin{array}{l}
\psi_{L} \\
\psi_{R}
\end{array}\right] \quad \text { Note that: } \quad \psi_{\mathrm{R}} \equiv\left(\frac{1+\gamma^{5}}{2}\right) \psi \quad, \quad \psi_{\mathrm{L}} \equiv\left(\frac{1-\gamma^{5}}{2}\right) \psi
$$

For massless fermions (or very small masses) left and right components are independent: chiral symmetry

Chiral transformations

Consider $\quad \mathrm{U}(\mathrm{x})=\mathrm{e}^{\mathrm{i} \alpha(x) \gamma^{5} \mathrm{t}}$
and recall properies of $\gamma^{5} \quad\left(\gamma^{5}\right)^{2}=1$,

$$
\gamma^{5 \dagger}=\gamma^{5}
$$

$$
\left\{\gamma^{5}, \gamma^{0}\right\}=0
$$

which imply $\quad \gamma^{0} \mathrm{U}^{\dagger}(\mathrm{x}) \gamma^{0}=\gamma^{0} e^{-i \alpha(x) \gamma^{5} \mathrm{t}} \gamma^{0}=e^{i \alpha(x) \gamma^{5} \mathrm{t}}=\mathrm{U}(\mathrm{x})$

$$
\begin{aligned}
\bar{u} & =\mathfrak{U} \\
\operatorname{det} \bar{U} & =\operatorname{det} \overline{\mathcal{U}}
\end{aligned}
$$

and the integration measure is not invariant:

$$
[\mathrm{D} \psi \mathrm{D} \bar{\psi}] \rightarrow \frac{1}{(\operatorname{det} \mathcal{U})^{2}}[\mathrm{D} \psi \mathrm{D} \bar{\psi}]
$$

This leads to chiral anomaly, as discussed previously within the framework of perturbation theory.

Chiral anomaly

We need to calculate $\frac{1}{(\operatorname{det} \mathcal{U})^{2}}$ for $U(x)=e^{i \alpha(x) \gamma^{5} t}$
Consider infintensimal transformation

$$
(\mathcal{U}-1)_{x m, y n}=i \alpha(x)\left(\gamma^{5} t\right)_{m n} \delta(x-y)
$$

and use

$$
(\operatorname{det} \mathcal{U})^{-2}=e^{-2 \operatorname{tr} \ln \mathcal{U}} \quad \operatorname{det} \mathcal{U}=\prod_{i} \lambda_{i}=\exp \left(\sum_{i} \ln \lambda_{i}\right)=e^{\operatorname{tr} \ln \mathcal{U}}
$$

This is very handy formula, since we can expand easily a logarithm for small U

$$
\begin{aligned}
(\operatorname{det} \mathcal{U})^{-2} & =\exp \left[-2 \operatorname{tr} \ln \left(1+i \alpha(x) \gamma^{5} t \delta(x-y)\right)\right] \\
& \approx \exp \left[-2 i \operatorname{tr}\left(\alpha(x) \gamma^{5} \mathrm{t} \delta(x-y)\right)\right] \\
& =\exp \left[i \int d^{4} x \alpha(x) \mathcal{A}(x)\right]
\end{aligned}
$$

Note that trace is both for Dirac indices and for fermion species (t) and space-time. In the last step we have introduced anomaly function, which is poorly fefined

$$
\mathcal{A}(x) \equiv-2 \operatorname{tr}\left(\gamma^{5} t\right) \delta(x-x)
$$

Diggression

Consider matrix $\quad \mathcal{A}_{\alpha a x, \beta b y}=A_{\alpha a, \beta b} \delta^{(4)}(x-y)$
with indices

$$
\begin{aligned}
& \alpha, \beta-\text { spinor } \\
& a, b-\text { flavor } \\
& x, y-\text { space-time }
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{tr} \mathcal{A} & =\sum_{\alpha, \beta} \sum_{a, b} \int d^{4} x d^{4} y \mathcal{A}_{\alpha a x, \beta b y} \delta_{\alpha \beta} \delta_{a b} \delta^{(4)}(x-y) \\
& =\sum_{\alpha} \sum_{a} \int d^{4} x \mathcal{A}_{\alpha a x, \alpha a x}=\int d^{4} x \operatorname{tr}(A) \delta^{(4)}(x-x)
\end{aligned}
$$

Chiral anomaly

Change of integration measure under chiral transformation

$$
[\mathrm{D} \psi \mathrm{D} \bar{\psi}] \rightarrow e^{i \int \mathrm{~d}^{4} x \alpha(x) \mathcal{A}(x)}[\mathrm{D} \psi \mathrm{D} \bar{\psi}]
$$

where

$$
\mathcal{A}(x) \equiv-2 \operatorname{tr}\left(\gamma^{5} t\right) \delta(x-x)
$$

Note: tr gives zero and δ gives infinity.
We need to properly define this by some regularization. Before doing that, let's incorporate anomaly into the lagrangian (under functional integral):

$$
\mathcal{L}(x) \rightarrow \mathcal{L}(x)+\alpha(x) \mathcal{A}(x)
$$

This looks like the lagrangian itself was not invariant under chiral transformation.

