QCD lecture 10

November 30



Functional integral for scalar field

One can easily translate the QM functional formalism to QFT with the help of
the following correspondence

qit)  —  o(x)
p(t) «—  TI(x)
it &~ G

and the analogue of the generating functional reads

Z[j] = J [DIT(x)Dé(x)]

wexp {i | @ (0600 —(1-10")30(1T, ) +j(x)(x])

The hamiltonian reads 1 1 I
H=3T1+ (Vo) - (Vo) + ym ¢ + V(¢)
and can be obtained from the Lagrangian

B Jd3x (1(0,6(x) (@%b (x) — 1m2$2(x)}



Functional integral for scalar field

Since the hamiltonian is quadratic in 1 we can perform Gaussian integral

() = | Do) exp {i [ d'x (£(6) +i0000(x) ]

where
£(9) = (141072 — 2 (1-10%) (V) - (V) +m2¢2) — (1-i0*)V(9)
Note that 1—1i0* in front of V' plays no role if interaction vanishes for large times.
Then ;
L - 4 :

Z[j] _exp{ 1Jd Xv(iéj(x))} Zolj]

where
Zolil = | [Do(x)] exp {i [ a'x (cold) +ix)0(x)}

and



Fermions
and Grassmann variables

Hermann Glnther Grassmann (1809 Szczecin — 1877 Szczecin)

Fermion fields anticommute. How to take this into account in functional integral?

Introduce Grassmann variables:
Pi@ai=1---N)

{bi, 05} =0
Linear space spanned by y;'s is called Grassmann algebra
Consider first N=1 2 =0
any function has a form f({) = a+1yb where aisanumberand {b,b}={b,}=0
so f(P)=a+Pb=a— by
We have to define left and right derivatives 5)11, fb)=b , f(p) 9y=—b

Berezin integral: [dll) o f(h) = [dxp f(V) and dep dyf(h) =0

The only solution consistent with these requirements Jdtb f(b) =1
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J



Functions of Grassmann variables

Consider now N Grassmann variables ¥ = (¥y,---,¥,) {¥i, ¥} =0
. = 1
The most general function:  f(b) =) _ ?‘“‘% senlin. €.
p=0""

Only linear terms in each variable are possible. Note that it must be C;, iE SRS s

N
alternatively < ¥, oy Y€ eiy, = W1y Y
For consitency with previous definition Jlel) f(p) =vy

Terms where at least one variable is missing do not contribute to the integral because

Integration measure dNy = dip dp,, | ---dip; assures that Jdll) 1=0

[ e = [ ([awa (e wr) wa) -y =

N——
1

b O 7
~"

1




Change of variables

Consider Vi =]J;;0; where 6;---0, are also Grassmann variables

Last term of the function f()
by, "'ll)iN Elj<ig I — (Jin'leh) (]iNiNeiN) €ireing Y
= det (]) e-j, ---ejN ej]”'jN Y -
From this we conclude

@ tw) = [aer ()] | ao fraw(e))

p o . o

2% det (J) v (same as for scalar integral)




Gaussian integral

Consider = [l e 311)1\1) {d)i)ll)]'} =0
(M) = [a™ exp (M)

where Mis N x N antisymmetric numeric matrix (real or complex). Such
integral is non-zero only if Nis even. For N =2

- 0
and exp (3 ViMib;) =1+ i, 3

Hence: IM)=p= [det(M]]VZ

For general even N we can always "diagonalize” M by special orthogonal matrix

e = \

0
M=Q 0 W QT Define Q™ =0,
—u2 0

T4



Gaussian integral

After change of variables we get

(M) = [det(Q)] ™" JdNG exp (1 67D6)

~

~"

Ky pp---=[det (D)]1/2

But det(Q)=+1 and we have

I(M) = [det(D)]"/? = [det (M)]"/?

This is inverse with respect to the Gaussian integral for ordinary variables

We will also need integrals with Grassmann sources #;

IV, m) = [ ™ exp (Mgt + o)
Changing variables
P! =i — Mi'n;

we obtain .
I(M,n) = [det(l\/l)]v2 exp(—%nTM ]n)



Gaussian integral for 2N variables

Consider J(M) = JdN £dM exp (WiMij&;) where y and & are independent

Then (exercise)  J(M) = det (M)

Complex Grassmann variables

. _V+ik _. 3§ . T )
Define X= v X NG and inverse w——ﬁ 5 g == 7

Integrations d&dp = idxdy,
II)E. = _:LYX )

ndXdYYX:JdEdq) BE=1 which leads to

dedi exp (LXX) = 1

or generally B B »
dxy dX,, - -- dx1dX; exp(X" Mx) = det (M)

with sources dx, dX, - dx1dX; exp (X" Mx+1"x+X'n) = det (M) exp (—n"M™'n)



Functional integral for fermions

The functional integral reads



Fermionic symmetries

Consider a set of fermion fields ¥ (x) (with components V¥, (x)) interacting with
a gauge potential Af(x)

At this moment we do not specify the meaning of index »
- it can be color index
- it can be flavor (up, down, strange ...)
- it can be spinor index
- or some combination of the above

What is important is the unitary transformation of these fields

Px) = UPKE) $i(x) = PTui(x)
Dirac conjugate:  P(x) = YT (x)y° = PpT(x)Uf (x)v° = P (x)y°uf(x)y°
These matrices have both fermionic and space-time indices: u

uxm,yn — umn(x) 6(X _U) )
Usm,yn = (YU (x)Y%)mn 8(x —y)



Fermionic symmetries

EXAMPLE: ;
U(X) . eloc(x)t

where «(x) € R and t is hermitean matrix (generator) that carries no

spinor indices.
Then multiplication is understood as (remember that (y9%)?=1):

~

(ﬁu)xm,yn = d*z Zﬁxm,zp uzp,yn
’ p
= |d*z8(x—2)8(z—1y) (e_i“(z)t> (ei“(z)t)
) 2=y % mp pn
=  Dmmole—yl

This means that (Ut = 1 which implies that detU detU = 1

Since under such transformation the Grassmann integration measure changes as

]
DYDY = s DDV

the measure remains invariant for this kind of unitary transformations.



Chiral transformations

Recall free Dirac equation: (Z(? — m) =9

and choose chiral representations for Dirac matrices

g To 171 & [® e . T-1 @
T @Y T e @ T @ 1

where 75 = iv%y1y%y?

Then Dirac equation can be rewritten as a set of two interconnected equations
(10; —io - V), — mibg = 0, (10; + io - V) vr — mp, = 0.
where a four component bispinor has been decomposed into two two component
Weyl spi
o ) = [ Zj; ] Note that: b, = (1 *‘ZVS) b, Y, = (1 —2v5) !

For massless fermions (or very small masses)
left and right components are independent: chiral symmetry




Chiral transformations

Consider  U(x) = e'*()¥’t

and recall properies of y> (y5)2 =1,
e
by l=e

5

which imply  y°Uuf(x)y°® = yoe_i“(x)ystyo = e**(x)Y7t — (x)

U="U
det U = det U

and the integration measure is not invariant:

1 _
[DYDW] (e [DYDV)

This leads to chiral anomaly, as discussed previously within the framework of
perturbation theory.



Chiral anomaly

5

for U(x) = et*x(x)r’t

]
We need to calculate (det )2

Consider infintensimal transformation
i =1 )xm,yn = iOL(X)(‘YSt)mn d(x —y)
and use (detU)_2 —o AL detU:HAi:exp (Zln)\i) = e U

This is very handy formula, since we can expand easily a logarithm for small U

(detU)™® = exp —2tr In (1 +ie(x) vy t8(x —y))]

~ i 5 =
= exp [—2itr (OC(X)Y to(x 9))]

2 iEKp —ijd4x OC(X)A(X)] )

Note that trace is both for Dirac indices and for fermion species (¢) and space-time.
In the last step we have introduced anomaly function, which is poorly fefined

A(x) = =2tr (y>t) §(x — x)



Diggression
Consider matrix Aaam,ﬁby — A’Llc)za,[i'bd(él)(aj _ y)

with indices «, 3 — spinor
a,b — flavor

T,y — space-time

Then

it A = S‘S:/dllxdlly/laa:c,ﬁby 50455(11)5(4)(33 T y)

),
o, a,b

S: / d4x~/4aaaz,aa:v — /d4§lf tI'(A) 5(4) (Qj — Qj)

a

8 [



Chiral anomaly

Change of integration measure under chiral transformation
[DII)DW —y eifd4x x(x)A(x) [DII)DE
where A(x) = =2tr (y>t) 6(x — x)
Note: tr gives zero and o gives infinity.
We need to properly define this by some regularization. Before doing that, let's
incorporate anomaly into the lagrangian (under functional integral):

L(x) = L(x) + x(x)A(x)

This looks like the lagrangian itself was not invariant under chiral transformation.



