QCD

problem set 14

1. Flavor $\mathrm{SU}(3)$ left and right currents read

$$
L_{\mu}^{a}=\bar{q}_{L} \gamma_{\mu} \frac{\lambda_{a}}{2} q_{L}, R_{\mu}^{a}=\bar{q}_{R} \gamma_{\mu} \frac{\lambda_{a}}{2} q_{R}
$$

where

$$
q_{L}=\frac{1}{2}\left(1 \mp \gamma_{5}\right) q .
$$

Show that vector and axial currents take the following form

$$
\begin{aligned}
V_{\mu}^{a} & =R_{\mu}^{a}+L_{\mu}^{a}=\bar{q} \gamma_{\mu} \frac{\lambda_{a}}{2} q \\
A_{\mu}^{a} & =R_{\mu}^{a}-L_{\mu}^{a}=\bar{q} \gamma_{\mu} \gamma_{5} \frac{\lambda_{a}}{2} q
\end{aligned}
$$

2. Effective Lagrangian describing Goldstone boson interactions reads

$$
\mathcal{L}_{\mathrm{eff}}=\frac{F^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right)-\frac{F_{\pi}^{2} m_{\pi}^{2}}{4} \operatorname{Tr}\left(U+U^{\dagger}\right)
$$

where $U=\exp (i \phi / F)$ can be expressed in terms of the physical meson fields. For $\mathrm{SU}(2)$ we have:

$$
\phi(x)=\sum_{a} \lambda_{a} \phi^{a}(x)=\left[\begin{array}{cc}
\pi^{0} & \sqrt{2} \pi^{+} \\
\sqrt{2} \pi^{-} & -\pi^{0}
\end{array}\right]
$$

Expand $\mathcal{L}_{\text {eff }}$ up to 4 -field interactions and calculate flavor trace.
3. There exists another possible parametrization of U

$$
U=\frac{1}{F_{\pi}}[\sigma(x)+i \vec{\tau} \cdot \vec{\pi}(x)] \text { where } \sigma(x)=\sqrt{F_{\pi}^{2}-\vec{\pi}^{2}(x)}
$$

Calculate the effective lagrangian up to 4 fiels in this case.
4. In the $\operatorname{SU}(3)$ case the mass term in the effecive lagrangian is equal to

$$
- \text { const. } \operatorname{Tr}\left(U M^{\dagger}+M U^{\dagger}\right)
$$

where the quark mass matrix reads.

$$
M=\operatorname{diag}\left[m_{u}, m_{d}, m_{s}\right]
$$

Decomposition of the mass matrix in terms of λ_{0}, λ_{3} and λ_{8} can be found in lecture 14b. Matrix $U=\exp (i \phi / F)$ can be expressed in terms of the physical meson fields:

$$
\phi(x)=\sum_{a} \lambda_{a} \phi^{a}(x)=\left(\begin{array}{ccc}
\pi^{0}+\eta / \sqrt{3} & \sqrt{2} \pi^{+} & \sqrt{2} K^{+} \\
\sqrt{2} \pi^{-} & -\pi^{0}+\eta / \sqrt{3} & \sqrt{2} K^{0} \\
\sqrt{2} K^{-} & \sqrt{2} \bar{K}^{0} & -2 \eta / \sqrt{3}
\end{array}\right) .
$$

Calculate the mass term (up to the quadratic terms in fields) and interpret all terms. Next, assume $m_{u}=m_{d}=m$ and calculate meson masses. There will be three masses for pions, kaons and eta expressed in terms of two parameters const. $\times m$ and const. $\times m_{s}$. Therefore there will be one, parameter independent, relation between these masses. Find this relation and check whether it is fullfiled experimentally.

