QCD
 problem set 11

1. Calculate the field tensor $F_{\mu \nu}$ for the pure gauge $A_{\mu}=-\frac{i}{g} \Omega \partial_{\mu} \Omega^{\dagger}$ where Ω is an $\mathrm{SU}(N)$ transformation matrix.
2. Prove that

$$
\int_{-T / 2}^{T / 2} d \tau_{1} \int_{\tau_{1}}^{T / 2} d \tau_{2} \ldots \int_{\tau_{n-1}}^{T / 2} d \tau_{n}=\frac{1}{n!} T^{n}
$$

3. Consider zero energy motion in the inverted double well potential $V(x)$

$$
E=\frac{1}{2} m \dot{x}^{2}-V(x)
$$

and express the classical action for a motion between the two maxima in time interval $\left\{-\frac{T}{2}, \frac{T}{2}\right\}$ in terms of the integral over the potential. Calculate action explicitly for the following potential

$$
V(x)=\frac{1}{8 a^{2}}\left(a^{2}-x^{2}\right)^{2} .
$$

Note that the unity "1"in potnential $V(x)$ has dimension of energy/distance ${ }^{2}$.
4. For the potential from problem 3 calculate the classical trajectory $\bar{x}(\tau)$ starting at $-T / 2$ in $-a$ and ending at $T / 2$ in a. This can done by using the fact that the instanton is a zero energy motion. From this condition you can calculate velocity in terms of a potential and then inegrating both sides over time and position you get the final answer. Compute classical velocity $d \bar{x} / d \tau$.
5. Show that the operator responsible for the quantal part of the Euclidean propagator for any $V(x)$ reads as follows

$$
D(\tau)=-m \frac{d^{2}}{d \tau^{2}}+V^{\prime \prime}[\bar{x}(\tau)] .
$$

Show that $d \bar{x} / d \tau$ is the eigenfunction of this operator to the eigenvalue equal zero. Show that that this zero mode is normalized if

$$
y_{\lambda=0}(\tau)=\sqrt{\frac{m}{S_{E}^{0}}} \frac{d \bar{x}}{d \tau}
$$

