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1. Derive the Van Vleck formula
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for the "quantum" part of the propagator

K = F (T ) exp
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(here S = Scl) for one dimensional problem of a particle moving in potential V .
Start from the Schrödinger equation
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write
K = exp
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)
and expand K in powers of h̄. Show that in the first two orders in h̄ the Schrödinger
equation reduces to
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Differenciate (1) ∂2
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and show that the equation obtained that way is identical

to (2) where lnF has been replaced by 1
2
ln ∂2S
∂x∂x0

up to a constant that can be fixed
from the normalization condition of the propagator for t→ 0:

K(x, x0; t = 0) = δ(x− x0).

Compute F for the harmonic oscillator and compare with the previously obtained
result.

2. Consider Gaussian integral

J(M) =

∫
dNξ dNψ exp

(
ψiMijξj

)
where ψi and ξi (i = 1, 2, . . . N) are independent Grassmann variables. Expanding
in a power series and commuting ξ’s and ψ’s show that

J(M) = det(M).



3. General fermionic mass term reads (where M is complex):
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Prove that (3) is Hermitean. Show that chiral transformation

ψ → eiαγ5ψ

ammounts to
M → e2iαM.

4. Prove that
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This calculation proves that anomaly is a total derivative.


