QCD

problem set 9

1. Derive the Van Vleck formula

$$
F(T)=\left(-\frac{1}{2 \pi i \hbar} \frac{\partial^{2} S}{\partial x \partial x_{0}}\right)^{1 / 2}
$$

for the "quantum" part of the propagator

$$
K=F(T) \exp \frac{i}{\hbar} S
$$

(here $S=S_{\mathrm{cl}}$) for one dimensional problem of a particle moving in potential V. Start from the Schrödinger equation

$$
i \hbar \frac{\partial}{\partial t} K\left(x, x_{0} ; t\right)=\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right] K\left(x, x_{0} ; t\right)
$$

write

$$
K=\exp \left(\frac{i}{\hbar} S+\ln F+\ldots\right)
$$

and expand K in powers of \hbar. Show that in the first two orders in \hbar the Schrödinger equation reduces to

$$
\begin{equation*}
\partial_{t} S+\frac{1}{2 m}\left(\partial_{x} S\right)^{2}+V(x)=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{t}(\ln F)+\frac{1}{2 m} \partial_{x}^{2} S+\frac{1}{m} \partial_{x} S \partial_{x}(\ln F)=0 \tag{2}
\end{equation*}
$$

Differenciate (1) $\frac{\partial^{2}}{\partial x \partial x_{0}}$ and show that the equation obtained that way is identical to (2) where $\ln F$ has been replaced by $\frac{1}{2} \ln \frac{\partial^{2} S}{\partial x \partial x_{0}}$ up to a constant that can be fixed from the normalization condition of the propagator for $t \rightarrow 0$:

$$
K\left(x, x_{0} ; t=0\right)=\delta\left(x-x_{0}\right) .
$$

Compute F for the harmonic oscillator and compare with the previously obtained result.
2. Consider Gaussian integral

$$
J(\mathcal{M})=\int d^{N} \xi d^{N} \psi \exp \left(\psi_{i} \mathcal{M}_{i j} \xi_{j}\right)
$$

where ψ_{i} and $\xi_{i}(i=1,2, \ldots N)$ are independent Grassmann variables. Expanding in a power series and commuting ξ 's and ψ 's show that

$$
J(\mathcal{M})=\operatorname{det}(\mathcal{M})
$$

3. General fermionic mass term reads (where M is complex):

$$
\begin{equation*}
M \bar{\psi} \frac{1+\gamma_{5}}{2} \psi+M^{*} \bar{\psi} \frac{1-\gamma_{5}}{2} \psi \tag{3}
\end{equation*}
$$

Prove that (3) is Hermitean. Show that chiral transformation

$$
\psi \rightarrow e^{i \alpha \gamma_{5}} \psi
$$

ammounts to

$$
M \rightarrow e^{2 i \alpha} M
$$

4. Prove that

$$
\partial_{\mu} K^{\mu}=\frac{1}{2} \varepsilon^{\mu \nu \rho \sigma} F_{\mu \nu}^{a} F_{\rho \sigma}^{a}
$$

where

$$
K^{\mu}=\varepsilon^{\mu \nu \rho \sigma}\left(A_{\nu}^{a} F_{\rho \sigma}^{a}-\frac{g}{3} f^{a b c} A_{\nu}^{a} A_{\rho}^{b} A_{\sigma}^{c}\right) .
$$

This calculation proves that anomaly is a total derivative.

