
QCD
problem set 7 (1-5) and 8 (6-7)

1. Hopf integral.
Calculate Hopf integral

I =

+∞∫
−∞

dx eiax
2

, a > 0

as a contour integral over the complex plane. Choose the contour in such a way that
the integral

∫
dt e−bt

2 with positive b and real t appears. When the contribution of
the large circle can be neglected? Is the phase of the result unique?

2. Using the result from the previous problem calculate the following matrix element:

〈y| exp

(
−i p̂

2

2m
ε

)
|x〉

where ε is a small time lapse. Note that for free particle (V = 0) ε = T need not to
be small and the above matrix element is in fact the exact propagator Kfree.

3. Path integral representation for the propagator K(b, a) can be derived from the
Schrödinger equation, as shown at the lecture. However one can invert the logic
and postulate the path integral representation for K. In this case one has to derive
the the Schrödinger equation. To this end show that the wave function given by

ψ(x2, t2) =

∞∫
−∞

K(x2, t2;x1, t1)ψ(x1, t1) dx1, (1)

where

K(b, a) = lim
ε→0

∫
dx1 ... dxN−1

(
m

2iεh̄π

)N/2
e
iε
h̄

∑N−1
j=0 Lj→j+1

satisfies the Schrödinger equation. Consider propagation by one "jump" in ε, for
the case where t2 = t1 + ε and x1 = x2−η. Discuss the relation between ε and η and
expand the r.h.s. of (1) in these parameters with accuracy O(ε)(Feynman Hibbs
Chapter 4-1).

4. Lagrange function for the harmonic oscillator reads:

L =
m

2
ẋ(t)2 − mω2

2
x(t)2.

Calculate the classical trajectory leading from point (xa, ta) → (xb, tb). Calculate
the classical action along this trajectory.
HINT: After finding the classical trajectory x̄(t), calculate the action integrating by
parts and using equations of motion.



5. For certain values ω(tb − ta) = ωT both classical trajectory and classical action
exhibit singularities. Find conditions that make them both finite. Discuss meaning
of these conditions.

6. Show that quantum contribution to K denoted by F , where

K = F (T ) e
i
h̄
S[x̄(t)]

reads as follows
F (tb − ta) =

∫
[Dy(t)] e

i
h̄

∫ tb
ta

1
2
m(ẏ2−ω2y2) dt .

Note that the system does not distinguish any specific time, hence the amplitude
may depend only on the difference T = tb − ta.
One of the methods of calculating of calculating F is to expand

y(t) =
∞∑
n=1

an sin
nπt

T
, n > 0 .

This representation of y(t) satisfies the boundary conditions, y(0) = y(T ) = 0. Note
that ∫

[Dy(t)] ∼
∏
n

dan

with all kinds of factors in front, but we do not need to calculate them. This is
so because we know the normalization of F in the limit ω → 0, which is just the
free particle propagator from problem 2. Using the fact that functions sin nπt

T
form

a complete set of orthogonal functions over the time interval 0 ≤ t ≤ T one can
easily compute the argument of the exponent in F , and then perform the Gaussian
integrals over dan’s. Final answer can be obtained by means of the following identity
(prove it!):

lim
N→∞

N∏
n=1

(
1− ω2T 2

n2π2

)− 1
2

=

(
sinωT

ωT

)− 1
2

.

7. Derive the Van Vleck formula

F (T ) =

(
− 1

2πih̄

∂2S

∂x∂x0

)1/2

for the "quantum" part of the propagator

K = F (T ) exp
i

h̄
S

(here S = Scl) for one dimensional problem of a particle moving in potential V .
Start from the Schrödinger equation

ih̄
∂

∂t
K(x, x0; t) =

[
− h̄2

2m

∂2

∂x2
+ V (x)

]
K(x, x0; t),



write
K = exp

(
i

h̄
S + lnF + . . .

)
and expand K in powers of h̄. Show that in the first two orders in h̄ the Schrödinger
equation reduces to

∂tS +
1

2m
(∂xS)2 + V (x) = 0, (2)

and
∂t(lnF ) +

1

2m
∂2
xS +

1

m
∂xS∂x(lnF ) = 0. (3)

Differenciate (2) ∂2

∂x∂x0
and show that the equation obtained that way is identical

to (3) where lnF has been replaced by 1
2
ln ∂2S
∂x∂x0

up to a constant that can be fixed
from the normalization condition of the propagator for t→ 0:

K(x, x0; t = 0) = δ(x− x0).

Compute F for the harmonic oscillator and compare with the previous problem.


