QCD

problem set 7 (1-5) and 8 (6-7)

1. Hopf integral.

Calculate Hopf integral

$$
I=\int_{-\infty}^{+\infty} d x e^{i a x^{2}}, a>0
$$

as a contour integral over the complex plane. Choose the contour in such a way that the integral $\int d t e^{-b t^{2}}$ with positive b and real t appears. When the contribution of the large circle can be neglected? Is the phase of the result unique?
2. Using the result from the previous problem calculate the following matrix element:

$$
\langle y| \exp \left(-i \frac{\hat{p}^{2}}{2 m} \epsilon\right)|x\rangle
$$

where ϵ is a small time lapse. Note that for free particle $(V=0) \epsilon=T$ need not to be small and the above matrix element is in fact the exact propagator $K_{\text {free }}$.
3. Path integral representation for the propagator $K(b, a)$ can be derived from the Schrödinger equation, as shown at the lecture. However one can invert the logic and postulate the path integral representation for K. In this case one has to derive the the Schrödinger equation. To this end show that the wave function given by

$$
\begin{equation*}
\psi\left(x_{2}, t_{2}\right)=\int_{-\infty}^{\infty} K\left(x_{2}, t_{2} ; x_{1}, t_{1}\right) \psi\left(x_{1}, t_{1}\right) d x_{1} \tag{1}
\end{equation*}
$$

where

$$
K(b, a)=\lim _{\epsilon \rightarrow 0} \int d x_{1} \ldots d x_{N-1}\left(\frac{m}{2 i \epsilon \hbar \pi}\right)^{N / 2} e^{\frac{i \hbar}{\hbar} \sum_{j=0}^{N-1} L_{j \rightarrow j+1}}
$$

satisfies the Schrödinger equation. Consider propagation by one "jump" in ϵ, for the case where $t_{2}=t_{1}+\epsilon$ and $x_{1}=x_{2}-\eta$. Discuss the relation between ϵ and η and expand the r.h.s. of (1) in these parameters with accuracy $\mathcal{O}(\epsilon)$ (Feynman Hibbs Chapter 4-1).
4. Lagrange function for the harmonic oscillator reads:

$$
L=\frac{m}{2} \dot{x}(t)^{2}-\frac{m \omega^{2}}{2} x(t)^{2} .
$$

Calculate the classical trajectory leading from point $\left(x_{a}, t_{a}\right) \rightarrow\left(x_{b}, t_{b}\right)$. Calculate the classical action along this trajectory.
HINT: After finding the classical trajectory $\bar{x}(t)$, calculate the action integrating by parts and using equations of motion.
5. For certain values $\omega\left(t_{b}-t_{a}\right)=\omega T$ both classical trajectory and classical action exhibit singularities. Find conditions that make them both finite. Discuss meaning of these conditions.
6. Show that quantum contribution to K denoted by F, where

$$
K=F(T) e^{\frac{i}{\hbar} S[\bar{x}(t)]}
$$

reads as follows

$$
F\left(t_{b}-t_{a}\right)=\int[\mathcal{D} y(t)] e^{\frac{i}{\hbar} \int_{t_{a}}^{t_{b}} \frac{1}{2} m\left(\dot{y}^{2}-\omega^{2} y^{2}\right) d t} .
$$

Note that the system does not distinguish any specific time, hence the amplitude may depend only on the difference $T=t_{b}-t_{a}$.
One of the methods of calculating of calculating F is to expand

$$
y(t)=\sum_{n=1}^{\infty} a_{n} \sin \frac{n \pi t}{T}, \quad n>0
$$

This representation of $y(t)$ satisfies the boundary conditions, $y(0)=y(T)=0$. Note that

$$
\int[\mathcal{D} y(t)] \sim \prod_{n} d a_{n}
$$

with all kinds of factors in front, but we do not need to calculate them. This is so because we know the normalization of F in the limit $\omega \rightarrow 0$, which is just the free particle propagator from problem 2. Using the fact that functions $\sin \frac{n \pi t}{T}$ form a complete set of orthogonal functions over the time interval $0 \leq t \leq T$ one can easily compute the argument of the exponent in F, and then perform the Gaussian integrals over $d a_{n}$'s. Final answer can be obtained by means of the following identity (prove it!):

$$
\lim _{N \rightarrow \infty} \prod_{n=1}^{N}\left(1-\frac{\omega^{2} T^{2}}{n^{2} \pi^{2}}\right)^{-\frac{1}{2}}=\left(\frac{\sin \omega T}{\omega T}\right)^{-\frac{1}{2}}
$$

7. Derive the Van Vleck formula

$$
F(T)=\left(-\frac{1}{2 \pi i \hbar} \frac{\partial^{2} S}{\partial x \partial x_{0}}\right)^{1 / 2}
$$

for the "quantum" part of the propagator

$$
K=F(T) \exp \frac{i}{\hbar} S
$$

(here $S=S_{\mathrm{cl}}$) for one dimensional problem of a particle moving in potential V. Start from the Schrödinger equation

$$
i \hbar \frac{\partial}{\partial t} K\left(x, x_{0} ; t\right)=\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right] K\left(x, x_{0} ; t\right)
$$

write

$$
K=\exp \left(\frac{i}{\hbar} S+\ln F+\ldots\right)
$$

and expand K in powers of \hbar. Show that in the first two orders in \hbar the Schrödinger equation reduces to

$$
\begin{equation*}
\partial_{t} S+\frac{1}{2 m}\left(\partial_{x} S\right)^{2}+V(x)=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{t}(\ln F)+\frac{1}{2 m} \partial_{x}^{2} S+\frac{1}{m} \partial_{x} S \partial_{x}(\ln F)=0 . \tag{3}
\end{equation*}
$$

Differenciate (2) $\frac{\partial^{2}}{\partial x \partial x_{0}}$ and show that the equation obtained that way is identical to (3) where $\ln F$ has been replaced by $\frac{1}{2} \ln \frac{\partial^{2} S}{\partial x \partial x_{0}}$ up to a constant that can be fixed from the normalization condition of the propagator for $t \rightarrow 0$:

$$
K\left(x, x_{0} ; t=0\right)=\delta\left(x-x_{0}\right) .
$$

Compute F for the harmonic oscillator and compare with the previous problem.

