QCD

problem set 6

1. Calculate the following traces:

$$
\left.\operatorname{Tr}\left[P \gamma_{\lambda} \gamma_{5} P \gamma_{\nu} P \gamma_{\mu}\right], \operatorname{Tr}\left[P \gamma_{5} \gamma_{\nu}(P-k)^{\prime}\right) \gamma_{\mu}\right]
$$

2. At the lecture we have computed

$$
\Delta_{\mu \nu \lambda}(a)=T_{\mu \nu \lambda}(p \rightarrow p+a)-T_{\mu \nu \lambda}
$$

(shorthand notation: $\left.T_{\mu \nu \lambda}(p \rightarrow p+a)=T_{\mu \nu \lambda}(a)\right)$ with the result

$$
\Delta_{\mu \nu \lambda}(a)=\frac{1}{8 \pi^{2}} \varepsilon_{\alpha \mu \nu \lambda} a^{\alpha}+\left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right)
$$

For

$$
a=\alpha k_{1}+(\alpha-\beta) k_{2}
$$

calculate

$$
k_{1}^{\mu} \Delta_{\mu \nu \lambda}(a) \text { and } k_{2}^{\nu} \Delta_{\mu \nu \lambda}(a) .
$$

3. In order to check vector current conservation for arbitrary momentum routing we apply the trick analogous to the one used for the axial current:

$$
\begin{aligned}
k_{1}^{\mu} T_{\mu \nu \lambda}(a) & =k_{1}^{\mu}\left(T_{\mu \nu \lambda}(a)-T_{\mu \nu \lambda}(0)\right)+k_{1}^{\mu} T_{\mu \nu \lambda}(0) \\
& =k_{1}^{\mu} \Delta_{\mu \nu \lambda}(a)+k_{1}^{\mu} T_{\mu \nu \lambda}(0)
\end{aligned}
$$

where

$$
\begin{aligned}
T_{\mu \nu \lambda}(0)= & -i \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{i}{(\not p-\not q)-m} \gamma_{\nu} \frac{i}{\left(\not p-\not k_{1}\right)-m} \gamma_{\mu}\right] \\
& -i \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{i}{(\not p-\not q)-m} \gamma_{\mu} \frac{i}{\left(\not p-\not k_{2}\right)-m} \gamma_{\nu}\right]
\end{aligned}
$$

Use the following tricks

$$
\not k_{1}=(\not p-m)-\left(\left(\not p-\not k_{1}\right)-m\right)
$$

and

$$
\not k_{1}=\left(\not p-\not k_{2}-m\right)-\left(\left(\not p-\not k_{1}-\not k_{2}\right)-m\right)=\left(\not p-\not \not k_{2}-m\right)-((\not p-\not q)-m)
$$

to compute $k_{1}^{\mu} T_{\mu \nu \lambda}(0)$. The resulting expression a is difference of two terms where the first term is obtained from the second one by a shift $p \rightarrow p-k_{1}$. For such difference we may use

$$
\Delta(a)=2 i \pi^{2} a^{\mu} \lim _{R \rightarrow \infty} P^{2} P_{\mu} f(P)
$$

where $a=-k_{1}$ and $f(P)$ is the second trace computed in for large P.
Present the final result for $k_{1}^{\mu} T_{\mu \nu \lambda}(a)$.
4. Hopf integral.

Calculate Hopf integral

$$
I=\int_{-\infty}^{+\infty} d x e^{i a x^{2}}, a>0
$$

as a contour integral over the complex plane. Choose the contour in such a way that the integral $\int d t e^{-b t^{2}}$ with positive b and real t appears. When the contribution of the large circle can be neglected? Is the phase of the result unique?

