QCD

problem set 5

1. For the Altarelli-Parisi probabilities defined in lecture notes calculate Mellin moments:

$$
\int_{0}^{1} d z z^{n-1} P_{a b}(z)=\gamma_{a b}^{(n)}
$$

The calculation of $\gamma_{q q}^{(n)}$ and $\gamma_{G G}^{(n)}$ requrie certain trick. We have

$$
\begin{equation*}
\gamma_{q q}^{(n)}=C_{F} \int_{0}^{1} d z z^{n-1}\left(\frac{1+z^{2}}{1-z}\right)_{+}=C_{F} \int_{0}^{1} d z\left(z^{n-1}-1\right)\left(\frac{1+z^{2}}{1-z}\right) \tag{1}
\end{equation*}
$$

To this end use (and prove) the following identity

$$
\begin{equation*}
\frac{z^{n-1}}{1-z}=-\sum_{k=0}^{n-2} z^{k}+\frac{1}{1-z} \tag{2}
\end{equation*}
$$

2. You should get that $\gamma_{q q}^{(1)}=0$. Interpret this result.
3. Write explicitly DGLAP equation for the singlet and gluon contributions for $n=2$. You should get that $q_{n=2}^{S}(t)+G_{n=2}(t)=$ const. Interpret this result and present arguments that const. $=1$.
4. Find DGLAP equation for

$$
f(t)=\frac{4 C_{F}}{3} q_{n=2}^{S}(t)-\frac{n_{f}}{3} G_{n=2}(t)
$$

and solve it. You should find that $f(t) \underset{t \rightarrow \infty}{\longrightarrow} 0$.
5. At $t \rightarrow \infty$ we can therefore, using the result of the previous problem, express $q_{n=2}^{S}(\infty)$ in terms $G_{n=2}(\infty)$, and then - plugging this into the constraint of problem 3 - compute $G_{n=2}(\infty)$. Find numerical value of $G_{n=2}(\infty)$ for $n_{f}=3,4,5,6$. Find out whether for finite t the value of $G_{n=2}(t)$ is larger or smaller than $G_{n=2}(\infty)$.

