
QCD
problem set 3

Figure 1: Feynman diagram corresponding to the quark self-energy. Time flow right to
left.

1. Last time we have been computing the diagram of Fig 1, which we expressed in
terms of two integrals
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for which we obtained
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Using
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where γ is Euler constant, show that the final answer for Σ(p) reads
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where
αs =

g2

4π
. (7)



2. In this problem we will calculate the d-dimensional angular integral. To this end
we shall introduce spherical coordinates in d dimensions. First we chose arbitrarily
a d-th axis (equivalent of the z axis in three dimensions) and project on it ~k vector
with cos θd−1. Therefore a projection on the d− 1 dimensional subspace orthogonal
do the d-th axis is k sin θd−1. Now we choose an axis in this d − 1 dimensional
subspace, the d − 1 axis, and project on this axis this projection (i.e. k sin θd−1)
with cos θd−2. Next, a projection on the the d− 2 dimensional subspace orthogonal
do the d-th and d − 1 axes involves sin θd−2. We continue this procedure until we
"run out of dimensions" with the result:

kd = k cos θd−1,

kd−1 = k sin θd−1 cos θd−2,

. . .

k2 = k sin θd−1 sin θd−2 . . . cos θ1,

k1 = k sin θd−1 sin θd−2 . . . sin θ1, (8)

where θ1 ∈ (0, 2π), θi>1 ∈ (0, π). Compute
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using
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3. In this problem we will discuss parton properties assuming very simple models for
quark distributions. My advice is to use Mathematica for these calculations.

(a) Using properties of parton distributions given at the last page of lecture 3
http://th-www.if.uj.edu.pl/m̃ichal/QCD_2021/lecture_3.pdf

uv(x) =
2A√
x

(1− x)3, dv(x) =
A√
x

(1− x)3

where index v stands for valence. Recall that total u or d quark distribution
is given as a sum of valence quarks and sea quarks us or ds respectively. We
assume that sea quark distributions are equal to antiquark distributions

us(x) = ū(x), ds(x) = d̄(x).

For this problem we assume that there are no strange quarks in the nucleon
and we assume isospin symmetry, which says that u and d distributions in
neutron, are equal to d and u distributions in proton. Calculate A. Check the



value of charge of the proton and neutron. Calculate total momentum carried
by the valence quarks. At this point we do not need any information on the
sea quarks.

(b) Gottfried sum rule. Calculate the difference of the structure functions of the
proton and neutron:

SG =

1∫
0

dx

x
(F p

2 (x)− F n
2 (x)) .

Experimental value reads SG ' 0.24. As you will see SG will depend on
the integral over the distributions of the sea quarks. Assume the sea quark
distribution of the following form

ū(x) =
B

x
(1− x)8, d̄(x) =

B

x
(1− x)β.

Note that constant B must be the same in both cases to assure that SG is finite.
From the experimental value of SG calculate B for several choices of power β
taking a few values around 8. Note that the antiquark and sea distributions
must be positive. For these choices calculate total (valence + sea) momentum
carried by quarks. Is it possible to get the value of 100%?


