
QCD
problem set 2

Figure 1: Feynman diagram corresponding to the quark self-energy. Time flow right to
left.

In this problem set we shall perform detailed calculation of the fermion self-energy in
QCD depicted in Fig. 1. Assume p2 6= 0. Note that the diagram (1) is almost the same as
in QED, except for the color T generators, that enter in the quark-gluon vertices. Gluon
propagator is in the Feynman gauge. The problem is divided into a few steps.

1. Write mathematical expression Σ(p) corresponding to the diagram (1). Show that
the only effect of the fact that we calculate this diagram in QCD is a color factor
in front.

2. In the loop diagram (1) change the 4-dimensional integral over the gluon momentum
k to a d dimensional one according to the following prescription:

d4k

(2π)d
→ µ4−d d

dk

(2π)d

Convince yourself that if we assume that

4→ d = 4− 2ε

where ε → 0+ then the integral over k is finite. The method of changing dimen-
sionality of space-time, known as dimensional regularization proposed by Veltman
and ’t Hooft, has great advantage over some other regularization methods, namely
it preserves gauge invariance. Note that in order to preserve dimensionality of Σ(p)
we had to introduce an arbitrary mass parameter µ.

3. In the following we shall put m = 0. Using

{γµ, γν} = 2gµν .



and
gµνg

µν = d.

calculate the numerator of Σ(p). You should obtain that

Σ(p) ∼
∫

ddk

(2π)d
/p+ /k

(p+ k)2 k2
= /pI + γµI

µ

4. To calculate integrals

{I, Iµ} =

∫
ddk

(2π)d
1

(p+ k)2 k2
{1, kµ} . (1)

introduce now Feynman parametrization for the propagators in (1), change variables

kµ → kµ + xpµ (2)

and introduce
M2 = −x(1− x) p2 . (3)

You should arrive at:

{I, Iµ} =

1∫
0

dx

∫
ddk

(2π)d
1

( k2 −M2)2
{1, kµ − xpµ} . (4)

5. In order to calculate the integral over ddk, which is the integral in Minkowski space,
we observe that (to see this reinstall Feynman +iε prescription):

∞∫
−∞

+

∫
CR

+

−i∞∫
+i∞

 dk0 = 0. (5)

Figure 2: Integration contour over k0. Black dots denote poles of Feynman propagators.



Since the integral over CR vanishes

∞∫
−∞

dk0 = −
−i∞∫
+i∞

dk0 = i

+∞∫
−∞

dE (6)

where k0 = iE. Therefore the integral over ddk in Minkowski space transforms into
the Euclidean integral

{I, Iµ} = i

1∫
0

dx

∫
dd~k

(2π)d
1(

−~k2 −M2
)2 {1, kµ − xpµ} (7)

where
~k = (E, k1, k2, . . . , kd−1). (8)

6. Since nothing depends on the angles, except of kµ, which is nullified by the angular
integration, we can use (we shall prove this later, but because full angular integral
corresponds to the surface of a sphere of radius r = 1 in d dimensions, you can check
that the formula below is right for d = 2 or 3):∫

dΩd =
2πd/2

Γ(d/2)
. (9)

After angular integration we arrive at (using d = 4− 2ε):

{I, Iµ} =
i

Γ(2− ε)
2π2−ε

(2π)4−2ε

1∫
0

dx {1,−xpµ}
∞∫
0

dk
kd−1

( k2 +M2)2
. (10)

Changing variables to r = k/M , and then t = r2, you should get two integrals that
are representations of the Euler beta functions:

∞∫
0

dt
tx−1

(1 + t)x+y
= B(x, y),

1∫
0

dx xα−1(1− x)β−1 = B(α, β). (11)

Identify values of x, y, β and α and then write the final expression for I and Iµ in
terms of Euler Γ functions only (use the well known expression for beta functions).


