

Figure 1: Feynman diagram corresponding to the quark self-energy. Time flow right to left.

In this problem set we shall perform detailed calculation of the fermion self-energy in QCD depicted in Fig. 1. Assume $p^{2} \neq 0$. Note that the diagram (1) is almost the same as in QED, except for the color T generators, that enter in the quark-gluon vertices. Gluon propagator is in the Feynman gauge. The problem is divided into a few steps.

1. Write mathematical expression $\Sigma(p)$ corresponding to the diagram (1). Show that the only effect of the fact that we calculate this diagram in QCD is a color factor in front.
2. In the loop diagram (1) change the 4-dimensional integral over the gluon momentum k to a d dimensional one according to the following prescription:

$$
\frac{d^{4} k}{(2 \pi)^{d}} \rightarrow \mu^{4-d} \frac{d^{d} k}{(2 \pi)^{d}}
$$

Convince yourself that if we assume that

$$
4 \rightarrow d=4-2 \varepsilon
$$

where $\varepsilon \rightarrow 0_{+}$then the integral over k is finite. The method of changing dimensionality of space-time, known as dimensional regularization proposed by Veltman and 't Hooft, has great advantage over some other regularization methods, namely it preserves gauge invariance. Note that in order to preserve dimensionality of $\Sigma(p)$ we had to introduce an arbitrary mass parameter μ.
3. In the following we shall put $m=0$. Using

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}
$$

and

$$
g_{\mu \nu} g^{\mu \nu}=d
$$

calculate the numerator of $\Sigma(p)$. You should obtain that

$$
\Sigma(p) \sim \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\not p+\not k}{(p+k)^{2} k^{2}}=\not p I+\gamma_{\mu} I^{\mu}
$$

4. To calculate integrals

$$
\begin{equation*}
\left\{I, I^{\mu}\right\}=\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{(p+k)^{2} k^{2}}\left\{1, k^{\mu}\right\} . \tag{1}
\end{equation*}
$$

introduce now Feynman parametrization for the propagators in (1), change variables

$$
\begin{equation*}
k^{\mu} \rightarrow k^{\mu}+x p^{\mu} \tag{2}
\end{equation*}
$$

and introduce

$$
\begin{equation*}
M^{2}=-x(1-x) p^{2} . \tag{3}
\end{equation*}
$$

You should arrive at:

$$
\begin{equation*}
\left\{I, I^{\mu}\right\}=\int_{0}^{1} d x \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{\left(k^{2}-M^{2}\right)^{2}}\left\{1, k^{\mu}-x p^{\mu}\right\} . \tag{4}
\end{equation*}
$$

5. In order to calculate the integral over $d^{d} k$, which is the integral in Minkowski space, we observe that (to see this reinstall Feynman $+i \epsilon$ prescription):

$$
\begin{equation*}
\left\{\int_{-\infty}^{\infty}+\int_{C_{R}}+\int_{+i \infty}^{-i \infty}\right\} d k^{0}=0 \tag{5}
\end{equation*}
$$

Figure 2: Integration contour over k_{0}. Black dots denote poles of Feynman propagators.

Since the integral over C_{R} vanishes

$$
\begin{equation*}
\int_{-\infty}^{\infty} d k^{0}=-\int_{+i \infty}^{-i \infty} d k^{0}=i \int_{-\infty}^{+\infty} d E \tag{6}
\end{equation*}
$$

where $k^{0}=i E$. Therefore the integral over $d^{d} k$ in Minkowski space transforms into the Euclidean integral

$$
\begin{equation*}
\left\{I, I^{\mu}\right\}=i \int_{0}^{1} d x \int \frac{d^{d} \vec{k}}{(2 \pi)^{d}} \frac{1}{\left(-\vec{k}^{2}-M^{2}\right)^{2}}\left\{1, k^{\mu}-x p^{\mu}\right\} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\vec{k}=\left(E, k^{1}, k^{2}, \ldots, k^{d-1}\right) . \tag{8}
\end{equation*}
$$

6. Since nothing depends on the angles, except of k^{μ}, which is nullified by the angular integration, we can use (we shall prove this later, but because full angular integral corresponds to the surface of a sphere of radius $r=1$ in d dimensions, you can check that the formula below is right for $d=2$ or 3):

$$
\begin{equation*}
\int d \Omega_{d}=\frac{2 \pi^{d / 2}}{\Gamma(d / 2)} \tag{9}
\end{equation*}
$$

After angular integration we arrive at (using $d=4-2 \epsilon$):

$$
\begin{equation*}
\left\{I, I^{\mu}\right\}=\frac{i}{\Gamma(2-\varepsilon)} \frac{2 \pi^{2-\varepsilon}}{(2 \pi)^{4-2 \varepsilon}} \int_{0}^{1} d x\left\{1,-x p^{\mu}\right\} \int_{0}^{\infty} d k \frac{k^{d-1}}{\left(k^{2}+M^{2}\right)^{2}} . \tag{10}
\end{equation*}
$$

Changing variables to $r=k / M$, and then $t=r^{2}$, you should get two integrals that are representations of the Euler beta functions:

$$
\begin{align*}
\int_{0}^{\infty} d t \frac{t^{x-1}}{(1+t)^{x+y}} & =B(x, y) \\
\int_{0}^{1} d x x^{\alpha-1}(1-x)^{\beta-1} & =B(\alpha, \beta) . \tag{11}
\end{align*}
$$

Identify values of x, y, β and α and then write the final expression for I and I^{μ} in terms of Euler Γ functions only (use the well known expression for beta functions).

