Consider change of Grassmann variables $\left\{\theta_{1}, \theta_{2} \ldots \theta_{N}\right\}$

$$
\psi_{i}=J_{i j} \theta_{j} .
$$

Last term of function $f(\boldsymbol{\psi})$

$$
\varepsilon_{i_{1} i_{2} \ldots i_{N}} \psi_{i_{1}} \psi_{i_{2}} \ldots \psi_{i_{N}} \gamma=\varepsilon_{i_{1} i_{2} \ldots i_{N}} J_{i_{1} j_{1}} J_{i_{2} j_{2}} \ldots J_{i_{N} j_{N}} \theta_{j_{1}} \theta_{j_{2}} \ldots \theta_{j_{N}} \gamma
$$

Now w observe that

$$
c_{j_{1} j_{2} \ldots j_{N}} \equiv \varepsilon_{i_{1} i_{2} \ldots i_{N}} J_{i_{1} j_{1}} J_{i_{2} j_{2}} \ldots J_{i_{N} j_{N}}
$$

is antisymmetric in indices j_{k}. Indeed, let's exchange j_{1} and j_{2} :

$$
\begin{aligned}
c_{j_{2} j_{1} \ldots j_{N}} & =\varepsilon_{i_{1} i_{2} \ldots i_{N}} J_{i_{1} j_{2}} J_{i_{2} j_{1} \ldots J_{i_{N} j_{N}}} \\
& =\varepsilon_{i_{2} i_{1} \ldots i_{N}} J_{i_{2} j_{2}} J_{i_{1} j_{1}} \ldots J_{i_{N} j_{N}} \\
& =-\varepsilon_{i_{1} i_{2} \ldots i_{N}} J_{i_{1} j_{2}} J_{i_{2} j_{1}} \ldots J_{i_{N} j_{N}} \\
& =-c_{j_{1} j_{2} \ldots j_{N}} .
\end{aligned}
$$

Hence c is proportional to the epsilon symbol

$$
\varepsilon_{i_{1} i_{2} \ldots i_{N}} J_{i_{1} j_{2}} J_{i_{2} j_{1} \ldots J_{i_{N} j_{N}}}=c \varepsilon_{j_{1} j_{2} \ldots j_{N}}
$$

Contracing with $\varepsilon_{j_{1} j_{2} \ldots j_{N}}$ we get

$$
\varepsilon_{j_{1} j_{2} \ldots j_{N}} \varepsilon_{i_{1} i_{2} \ldots i_{N}} J_{i_{1} j_{2}} J_{i_{2} j_{1}} \ldots J_{i_{N} j_{N}}=N!c
$$

but

$$
\begin{equation*}
\varepsilon_{j_{1} j_{2} \ldots j_{N}} \varepsilon_{i_{1} i_{2} \ldots i_{N}} J_{i_{1} j_{2}} J_{i_{2} j_{1}} \ldots J_{i_{N} j_{N}}=N!\operatorname{det} J \tag{1}
\end{equation*}
$$

So we have

$$
\begin{aligned}
\varepsilon_{i_{1} i_{2} \ldots i_{N}} \psi_{i_{1}} \psi_{i_{2}} \ldots \psi_{i_{N}} \gamma & =\varepsilon_{i_{1} i_{2} \ldots i_{N}} J_{i_{1} j_{1}} J_{i_{2} j_{2}} \ldots J_{i_{N} j_{N}} \theta_{j_{1}} \theta_{j_{2}} \ldots \theta_{j_{N}} \gamma \\
& =\operatorname{det} J \varepsilon_{j_{1} j_{2} \ldots j_{N}} \theta_{j_{1}} \theta_{j_{2}} \ldots \theta_{j_{N}} \gamma
\end{aligned}
$$

Ilsustration of formula (1) for $N=2$:

$$
\begin{aligned}
\varepsilon_{i j} \varepsilon_{a b} J_{i a} J_{j b} & =\varepsilon_{a b} J_{1 a} J_{2 b}-\varepsilon_{a b} J_{2 a} J_{1 b} \\
& =J_{11} J_{22}-J_{12} J_{21}-J_{21} J_{12}+J_{22} J_{11} \\
& =2\left(J_{11} J_{22}-J_{12} J_{21}\right) \\
& =2!\operatorname{det} J
\end{aligned}
$$

