QCD lecture 9

December 9



Quantization of QCD

In QED gauge fixing resulted in an infinte constant that could be discarded.

We have decomposed the gauger field into two components: A" = Al + Ah*

getting [DA"] = [DAY] [DA[]
Zo[j*] = J [DA!(x)] exp {1J d*% JuAftl
x J [DAY (x)] exp {1J d*x (= 3Py +5uAt) |
- KMV ~ |
Recall  Aj(k) = (k—z) Ay (k) but vector current is conserved K" Ju =0

and J [DA}(X)] is an infinite constant that has to be divided out.

This is no longer true in QCD.



Quantization of QCD

Consider expectation value of some gauge invariant operator

<O> J[DA“ )] O(An) exp{ Jd4 (_ %FSVFG pv)}

A

~"

§ A

YM[
When we perform gauge transformation

Aulx) —  A2(x)=QF(x)Aulx) Q(x) + é 0F(x)9,.0(x)

the integration measure changes

SA . (x) )]

[DAG . (X)] = [DAapu(x)] det [(Mbv(y)

We need to calculate the Jacobian. For this we need a small reminder from group theory.



Diggression
Consider some representation r
X = X, T%r), Y =Y,T%r)
Let's calculate an object analogous to gauge transformation:

FEY ™ = ¥ —{[X,¥]|+
= Y —iX.Y; [T% T +
— [Y _ 7(_zfacb)Xa}/b] TC =

_ [Y i (T2, Yb+] T
This can be written in short [e_iXYGHX]C = [GXP( 1.X T;ldj)] Yy

Gauge transformation OfA() = ¢—ada 4

A1) _ 542, (@)
o) o — ) (), det [ 20m))

5Abl/ (y)



Quantization of QCD

Changing gauge does not change the integration measure
[DA2,(x)] = [DAqu(x)]

So the path integral is infinite. To eliminate gauge redundancy we have to fix the gauge.

G%(A,(x)) =0

[ This condition may have many solutions (Gribov copies)
but only one of them is perturbative, others are ~ 1/g ]

We want to split the functional integration into

a physical component in the gauge fixing manifold
and a component along the gauge orbit (analogue
of transverse QED field). This can be done by
inserting

5[G*(Ay)]

P gt into the functional integral.

Figure 5.1: Hlustration of the gauge fixing procedure. The lines represent the
g gaug 2 pl T
gauge field configurations spanned when varying Q). The shaded surface is the

manifold where the gauge condition is satisfied, and the black dots are the pauge- H ow t h i S b e h aves un d er t h e ga u ge t ran Sfo rm at i on ?

fixed field configurations.




Quantization of QCD

Toy model example iZg)="0
[ dzdtt@) = [ dordta—a) = o
|f'(2)] b | —
Define A~'A = | [POR)] slGe(Ag)
then

A(A,) = det ( 50 )GQ(A{?)_O [ Faddeev — Popov determinant ]

In QED A does not depend on A, butin QCD it does, becuse gauge tranformation

is non-linear: 3
AL (x) = QT (x) Au(x) Q(x) + z Qf(x)0,Q(x)




Quantization of QCD

First we prove that A[A,] is gauge invariant

QI

—lrae — i a /-8/(?
AT'[Ag] = [ [DQ(x)] 8[GH(ASQ)]

i

= | [DO'(x)Q’(x))] 8[G*(AZ")]

= | [DQ’(x)] 8[Ge(AR" )]l = ATT[A,]
Last step follows from the unitarity of gauge transformations (there exists a group
invariant measure on a Lie group).

Hence

1=A[A,] J [DQ(x)] 8[G*(A])]

and we will insert this unity under the functional integral.



Quantization of QCD

Expectation value of gauge invariant operator:
(0) = J[ ]J[DA“( )] AIA S[GE(A2)] O(A,,) eiSvm (Al

Change variables: A, —» A&

Invariants: [DAR'] = [DA,],
SYM [A&t] — SYM [Au] )

B[AR'] = aAl,

A[A&f] = A[Ap] )

At this point the functional integral does not contain the gauge transformation

]J[DAQ( )] A[Au] 6[G0(Au)] O(Au) eiSYM[Au]

(0) = | pa

We can now drop [DQ] . So functional integral has been factored out into a gauge
orbit part at the expense of A[A,,] that modifies QCD Feynman rules.



Quantization of QCD

We need to find a functional representation for the Faddeev-Popov determinant.
Recall (lecture 5)

det (M) = J dNEd™p exp (WiMj&;)

Let's introduce new fermion fields (Faddeev-Popov ghosts)
det (1M) = J [Dxa(x)DXa(x)]

X exp {IJ d*xd*y X, (x) Mab(x,y) Xb(y)}

and use a trick for covariant gauges in QED (lecture 5)

J [Dw(x)] exp { — i% J d*x wz(x)} 5[G*(AL(x)) — w]



Quantization of QCD

After integration over D[w]

(©) = J[DA:;(x)] [Dxa(x)DX, ()] O(A,)

1
X exp iJ d*x (—ZFEVFQ b —% (G(AW))* +Xa Map Xb)

'CYM £GF 'CFPG

a

) at Q =1 (detis gaugeinv.)

Note that Mab ~9< TN

and therefore is a function of A,,. Ghost fields couple to the gauge fields and
appear only inside loops. In practice they remove contributions from the
"longitudinal” gauge fields. They ensure that the theory is unitary.

Both GF and FPG depend on the gauge choice (choice of function G). Typically
we choose G linear in Ay, so the gluon propagator will depend on & and will
be the same as in QED, up to the color factor.

[ Matrix Mgp can be scaled by any factor M — &M, this changes the propagator S — k'S
and vertices V — kV leaving the final result invariant.]



Covariant gauge

EXAMPLE
Covariant gauge GHA] = MAS — w (%)
gluon propagator (as in QED)

I —ig"v L5 1\ p*p”
(ONTRY . === L 19 ab 10ab PP
G, ob(P) = e = 02 T+ +p2+io+ (1 ) 2

&

We need to calculate matrix Mab

Gauge transformation AL (x) = QN (x) Au(x) Q(x) + % QM%) 9, Q(x)  Qa) = exp(if,(z)T?)

infinitensimal  g8A4 . (x) = g f*® 0y (x) Ac u(x) — 0,04(x)

which YiE|dS: g oG =g fabe (aueb(x)) Ac LL(X)‘FngbC Ov (x) (auAc u(x))_D Oa(x)

and: 6G“(A)

Mab = 9 —550 = g TP (QHA. b (x)) +g TP AL (%) O* —8qp O

So this matrix contains gluon-ghost interactions and ghost propagator (inverse)



Covariant gauge

This results in the following FPG langrangian:
E . o (_ Sab O+ g 2% (BHA, (x)) + g 2P A, () a“) Xb

and the following Feynman rules:

. iéab
- pZ4iot

e, = gfet (p, +qu) =gf*®r,



v

— —1g"Y dab 1dab 1\ p*p
— ==
SR P20t | priot £) p?

— B iy
> - p—m+iot
% - iéab
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au
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i
= —igy* ()
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Figure 5.2: Feynman rules of non-Abelian gauge theories in covariant gauge. We
also list the rules involving fermions for completeness. Latin characters a, b, ¢ refer
to the adjoint representation, while the letters i, j refer to the representation v in
which the fermions live.




Axial gauge

Usefull class of gauges
G*A)=nFA] —w(x)

where n" is a fixed four-vector. If it is time-like — temporal gauge
light-like — light-cone gauge

Then (exercise)

] "% LoV a
ZAS (g"¥O—0"0Y —EnHnY) AS

and we have to invert the following matrix:

g"Vp? —pHpY 4+ EntnY

which gives (exercise):

ofvie » _ —E0ap [ o PR EDPRY. DRRY 2o o 2
e o) = o 9 (™ )



Axial gauge
Final result (exercise)

LFPG = YQ <_ 5Clb nuap + 9 beC nuA’C LL(X)> Xb

and the ghost propagator and ghost vertex look like:

e, =igfin, .
’ [ & u

b /'4/"



Pr

Chiral symmetry

Quark masses (from sum rules at u =1 GeV)

m, = 0.005 GeV m. = (1.15 — 1.35) GeV
mq = 0.009GeV | < 1GeV < mp = (4.0 — 4.4) GeV
m, = 0.175 GeV m; = 174 GeV

Approximate symmetry: up, down, strange are massless.
QCD lagrangian ( G* - field tensor)

_. 1 =
L%CD == Z QIZD qi — ngu,agg

l=u,d,s
We know, that right-handed and left-hanfded fermions transform independently:

1 1
=5(1+m) =P, Pi=5(1—m)=F Pr+Pp=1



Chiral symmetry

Define
qr = Prq, qL = PLq

and rewrite the lagrangian

— . 1
Locp = Z (qrat qra + quiill qry) — Zg,u,u,agéw

[=ud,s

Chiral symmetry (global U(3), x U(3); )
ur, ( ur, 8 % o uy,
dL — UL dL — exp —1 Z 9{;—“ e"'e dL
K — 2
Sy, Sy, a=1 SL
8
> e

UR / Uup X - Up
dp — Ugr dp —exp | —2 ‘}1?70 &9 dp
SR \ SR a=1 SR




Parity
Consider Dirac equation
{z'q"at TR . -m.} b(t,x) =0
and space reflection x— —x

then {i7°8,— iy- 0 —m} (t,—x) =0

What is the wave function transformation generated by space reflection?
We have to change sign of space gamma matrices and leave unchanges time
gamm matrix:

,YO:P—I,YOP _’Y:p_l’}’P

Then {i'yoat + iy - O — m} d)P(t,x) =0

where

’gbp(t,X) =P ’{,Z)(t,—X)



Parity

We need to solve =P 14\0p —y=P 4P
and the solution reads (exercise): P = p 1= 70
Parity transformation P:q(Z,t) — yq(—Z,1)

changes chirality (because y? anticommutes with y>)
qr(T,t) = Prq(Z,t) — Pryoq(—%,t) = v PrLq(—%,t) # £qr(—7,1)

Parity transforms left and right fermions into each other.

QCD physical states (mesons) should be grouped in multiplets of some representations
of U(3), x U(3), and, because of the fact that parity transformation changes chiralty,
multiplets with positive and negative parity should be gegenrate (in mass). This is not
observed experimentally. We will make this statement more precise later.



Conserved currents

Recall Noether theorem:
in order to find conserved currents of some global symmetry transformation, we have

to promote this symmetry to a local one and calculate the currents.

Consider L=L(P;,0,P;)

which leads to the equations of motion:
oL oL
— = —
0D, 00, P;
Suppose fields ®:(z) transform according to some symmtry group (local). Consider
infinitensimal transformation

®;(z) — Pl(z) = ®;(z) + 6P;(x) = Bi(z) — iea(z) F*[P;(z)]
which is not necessarily linear
®;(z) = ®}(z) = Pi(x) — deq(x)tf;@;(x)

0, s =1;-<;m




Conserved currents
Field transformation
®i(z) — Di(x) = Bi(z) + 09P:(x) = Pi(z) — tea(z) F[P5(z)]
Variation of the lagrangian

5L = L(®,8,8]) — L(D;,8,P;)

8
N %M’ aaccb L
= la) (—z o - %M) + Outa() (—zﬁ 62‘5@'_ F)
Define current oL — —iagf(biﬁ‘,-“
o 0" = (g );j g
aznd use E(c;I\L/I = 8(1) T 06 = sl W 7
—9 =

a%;, 00,



Conserved currents

Wearriveat  §L = e,(x)8,J"" + Oyeq(z) J*

This allows do define currents and current derivarives as

do0L

pa
/  004e,”
0oL

pa
OpJ = B

If we demand the action to be invariant, we can integrate last term by parts, and
we conclude that the current is conserved:

8,1 =0

It follows that there exists a consrved charge (exercise)

QU (t) = / B2J0(F. 1)



Currents in QFT

Canonical quantization
define generalized momenta II; = L/0(5,®;)

and impose commutation rules:

i83(Z — 7)dy5,
= 0,
0

(7, ), I1;(7, t)
®i(Z.1), ®;(y,1)
IL(Z,¢), I,(§,1)] =

.

Suppose now that the symmetry transformation is linear

®;(z) = ®j(x) = Pi(x) — deq(2)tf;®5(x)
then (current and charge are operators now, normal ordering suppressed)

oL
n.al, — ol e SR
J(ﬂ_.n%m@%
Qa(t) — —z/d3.rl'[1(r)t‘:1¢3(1')



Commutation rules

It is easy to show (exercise)

@0, 270 = —ity [ PG 08,(z.0), 2u(7.0)

= —t3;®5(7.).
Field (operator) transformations induce transformations of the Hilbert space

la’) = [1 +i€e,G*(t)]| @)

where G® are hermitian operators (they in principle could depend on time).
We demand

(BlAa) = (B A'la)



Commutation rules

For a matrix element of a filed we have

(B|®i(x)|) (B'|®i(z)|a’)

(BI[1 — i€, G(1)][®:(z) — iebt?jtbj(;r)][l +16.G(t)]|a)

terms linear in ¢ should vanish
0 = —iea[G (), Pi(x)] —ieat;Pj(x)
i€a[Q%(1), ®i(x)]

From this we conclude that G“(¢t) = Q*(t)



Commutation rules

Finally
[@%(1), Q°()] = —i(tdtde — t2:t%) / >z I1;(Z, t) B (7, t)

Recalling that

a 4b @ . c
tijtik — tijtjx = iCabeli

We have u : ' .
[@°(2), Q"(t)] = iCancQ°(2)



