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Euclidean path integral

There is no classical  trajectory:                         Go to Euclidean time
where 

Potential is inverted and
there is
a classical trajectory called instanton.

To calculate the energy splitting we
have to sum over an infinite
number of instantons
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Explicit model
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Instanton is an Euclidean trajectory
of zero energy.



Multi-instanton transition amplitude

Here                           is the exact classical trajectory that can be approximated by
a sum over one-(anti) instanton trajectories          where                       mark times
of individual jumps.
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We are considering fluctuations around 
one instanton. But for most of the time
the particle is either in one or the other
maximum (minimum in Minkowski space)
i.e. it sits there and does not move.
This corresponds to a trivial classical
trajectory of an Euclidean oscillator
(potential is quadratic around each 
maximum). Quantal operator

is the same in either maximum. So we
can approximate fluctuations around one
instanton

where        is a correction factor.

Oscillator approximation
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Energy splitting

Because in this limit only the the ground state survives, we have two lowest energies

Splitting is nonperturbative suppressed by the exponent from the classical action



Periodic potential
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Minima are labelled by integer

we jump right     times and left     times.

Let's calculate the amplitude  



Periodic potential

Use the following representation



Periodic potential

So the ground state band



Calculation of K~

Note that      is a number given by a ratio of the square root of two determinants

For the instanton we need to find eigenvalues of

We will show now that this operator has one zero mode (!). This would in principle
render       infinite.  



Instanton zero mode
Recall that instanton has zero (Euclidean) energy:

Let's differenciate velocity over time:

and once more:

But this is our eigen-equation for a zero mode               (this the lowest eigen-value):

We can normalize this mode (exercise)

where 



Instanton zero mode
Consider one instnaton trajectory

Note that

Change of the trajectory due to the change of the jump time       is equal to

But this is the change corresponding to the zero mode

So we have already taken this change into accound when integrating over jump times.
This is the exact result (while integrations over dai are in Gaussian approximation).
We therefore have to omit                in the instanton determinant, include Jacobian
for the change of variables and remove                 arising from the Gaussian integral. 



Instanton in QM: summary

Here prime means: no zero mode

Instantons in Minkowski space correspond to the tunelling between the minima 
of the potential.

In Euclidean space instantons are localized (around      ) solutions of classical
equations of motion that in infinty go to the different vacua. 

Instanton quantal operator for fluctuations around classical trajectory has a zero mode.

Zero modes have to be omitted from the quantal determinant and taken care off exactly.

Instantons give rise to the splitting of naively degenarate energy eigen-states. This splitting
is non-perturbative and exponenially suppressed.



Instantons in QCD
In order to continously deform                             we have to consider field configurations
with nonminimal action

Instantons are solutions of the Euclidean equations of motion (QCD or Yang Mills eqs.)

with the following boundary conditions:

They are time dep. solutions of n = 1 and minimal possible action. 

Hilmar Forkel A Primer on Instnatons



Instantons in QCD



Instantons in QCD

Instantons satisfy important property. Define dual field tensor

Recall:

Euclidean action has +sign

Construct a positive quantity:

which gives a Bogomolny bound

Instantons minimize the action, so they are self-dual solutions



Explicit instanton solution

't Hooft symbols

change sign for 
anti-instantons

They are localized solutions.         is called instanton center,     instanton size  



Explicit instanton solution

One dim. plot:

They are localized solutions.         is called instanton center,     instanton size  
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Collective coordinates
Once we have classical solution we have to calculate quantal deteminant. However,
like in QM, there will be zero modes corresponding  to the flat directions of 
the classical action (within a topological class):

• change of instnanton center         - 4
• change of size       - 1
• 3 parameters of a global gauge transformation (or 3 rotations)

Therefore there are 8 zero modes. In QM we had one zero mode corresponding to τ1

Consider fluctuations around the classical configuration

Then



Collective coordinates

However, for each zero mode we do not integrate over a complete set of eigen-functions
of        but w perform an exact integration over the zero modes. Recall that there is 
a Jacobian between the two. In QM we had

instead of

This holds also in the QCD case: 

This shows how highly non-perturbative are instanton contributions to the expectation
values in QCD.
Nonzero modes make coupling constant running.



Lattice QCD

Each lattice is a four-dimensional 
array (283 x 96, say) of four 3 x 3 
complex matrices representing 
these fields in a tiny box of space 
measuring about 2 femtometers
on a side (1 fm = 10-15 m) 
and extending about 10-22 seconds 
in time.

Instantons and anti-instantons

https://www.nersc.gov/news-publications/nersc-news/nersc-centernews/2004/nersc-s-qcd-library-is-a-model-resource/

https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/2004/nersc-s-qcd-library-is-a-model-resource/


Chiral symmetry breaking

Diakonov 2003
Instantons at work

Quark propagaring
between instantons
and anti-instantons
changes chirality.

This leads to the
chiral symmetry breaking,
quarks get constituent
mass that is momentum
dependent

This mechanism explains
why proton has mass
of 1 GeV, while current
(Higgs)  masses of u,d quarks
are ~a few MeV

Average instanton
zize ρ = 1/3 fm and
R = 1 fm (average
distance between
instantons)



Instantons and θ term
In principle we should include the sum over all topological sectors in
the QCD path integral

where P(n) is a weight factor and measure              is restricted to topological
sector n. One can prove 

the solution is                              where       is an arbitrary constant. However 

So we may add theta term to the QCD lagrangian and integrate over all A fields.
Note that θ = 0 corresponds to the uniform weight factor.
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