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Anomaly – summary from lect. 6
Chiral transformation                                changes fermionic integration measure:

This change can be effectively added to action

where

This expression is mtemthically not well defined. Fujikawa proposed the following
gauge invariant regularization:

where



Anomaly – summary from lect. 6
Regularized expression can be computed:

This is the same expression we got in perturbation theory. Note that Fujicawa method is
explicitely gauge invariant, while in perturbative calculation we had to impose vector
current conservation.

In Euclidean metric Dirac operator is hermitean and we can relate anomaly to
the number of zero modes (Atiyah-Singer index theorem):

where



θ term and strong CP problem
Recall QCD Lagrangian:

In principle we could add a new term that has the same dimension as

called the θ-term. This is precisely the anomaly multiplied by a dimesionless coupling 
constant θ. This term, however, can be expressed as a total derivative and therefore
does not contribute to the equations of motion:

where (exercise)

or

and                                      This term is Lorentz and (small) gauge invariant but violates CP.



θ term and strong CP problem
θ term is related to the neutron electric dipole moment: 

Why is it so small? One would naturally expect θ ~ 1. This is called strong CP problem.

Relation to the quark masses

This transformation is anomalous

The same effect would be caused by a change of coupling θ
(if we add theta term to the lagrangian)



θ term and strong CP problem
Let's allow for the complex fermion masses: this would violate P and CP

Transformation                                results in (exercise) 

which is equivalent to

Since any change of θ can be undone by a chiral transformation of quarks
physical quantities cannot depend separately on θ and          but on the combination:

which is invariant. So θ term would have no effect if at least one quark mass was zero.

Possible solution to the CP problem – axion: θ is a field (not discussed here)



Topology of gauge fields
Since         is a full derivative, we can apply Stokes' theorem to calculate the action 

3-dim sphere of radius R
Recall  non-Abelian gauge transformation (now we use Ω rather than U ):



Topology of gauge fields
Since         is a full derivative, we can apply Stokes' theorem to calculate the action 

3-dim sphere of radius R
Recall  non-Abelian gauge transformation (now we use Ω rather than U ):

pure gauge
If all color sources are placed in a finite region of space time, we can assume that
the gauge fields on the 3-sphere are pure gauge plus a small correction:

and matrix           depends only on the direction of       Since  



Topology of gauge fields
If

then

One can show  that               for pure gauge is zero (exercise)

Therefore

Since                the integral is finite and we can drop lim  Therefore the integral depends
only on            - unitary matrix that maps a 3-dim sphere in Euclidean space-time onto
the gauge group



Topology of mappings

Consider baby-model: mapping of
1 dim sphere (circle) onto U(1) group,
which is also a circle.

One can characterize these mappings by
a winding number.

Mappings from one class cannot be deformed
into a mapping of another class. They are called
homotopy classes:
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Topology of mappings

Some mappings can be always shrunk
to a point.



Homotopy classes
We have a mapping

To discuss topology it is convenent to restrict discussion to an SU(2) subgroup of SU(N)

For                            we have the following parametrization
with        real satisfying                                  But this is equation of a 3-sphere! 

So in practice we have the following mapping

It is known (generalization of our 1 dim example)



Homotopy classes
Mapping of a 3 dimensional sphere is characterized by homotopy class

So for SU(N) where N > 1

We see now that anomaly, that is an integer

is related to the topology of gauge fields. 

Now we can understand notation



Instantons - preliminaries
Consider QCD in temporal gauge                    There are still residual time-independent
gauge transformations possible that preserve this condition denoted by U
We shall assume that they approach a constant at spacial infinty, chosen to be unity
(vacuum):

This means that all points at spacial infity correspond to the same value of U, so we
can identify them (squeeze to a point), which means that R3space compactified to a sphere,
so that we have a mapping

These mappings fall into a distinct tolological classes characterized by an integer n

For pure gauge field 

(field tensor is zero! – exercise) in a given class n we cannot penetrate to another
class m within a pure gauge configuration



Instantons - preliminaries
In order to continously deform                             we have to consider field configurations
with nonminimal action

Example (hedgehog)                                                         
Exercise: calculate 
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Double well potential
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Double well potential
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Two (almost) degenarate states: one concentrated around -1, 
the other one around +1. However since there is tunneling we expect two
nearly dgenarte lowest energy states.



Double well potential

-2 -1 1 2

-1.0

-0.5

0.5

1.0

Goal: calculate the energy splitting using path integral formalism.
Calculate K(a,-a,T) and use energy representation



Euclidean path integral

There is no classical  trajectory:                         Go to Euclidean time
where 

Potential is inverted and
there is
a classical trajectory called instanton.

To calculate the energy splitting we
have to sum over an infinite
number of instantons
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Explicit model
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Instanton is an Euclidean trajectory
of zero energy.



Path integral in QM 
– reminder

D is a Sturm-Liouville operator

Use yn basis to expand                                           then

and 



Instanton – classical action
Recall that instanton has

Hence 

barrier transmission coefficient

Consider now amplitude                                              that has infnitely many jumps:
instantons and anti-instantons separated in time (dilute approximation)



Multi-instanton transition amplitude

Here                           is the exact classical trajectory that can be approximated by
a sum over one-(anti) instanton trajectories          where                       mark times
of individual jumps.



Multi-instanton transition amplitude

In dilute approximation

The quantal part can be written as a kind of  propagator

T1 T2    T3 Tn-1



Multi-instanton transition amplitude

In dilute approximation

The quantal part can be written as a kind of  propagator

T1 T2    T3 Tn-1



We are considering fluctuations around 
one instanton. But for most of the time
the particle is either in one or the other
maximum (minimum in Minkowski space)
i.e. it sits there and does not move.
This corresponds to a trivial classical
trajectory of an Euclidean oscillator
(potential is quadratic around each 
maximum). Quantal operator

is the same in either maximum. So we
can approximate fluctuations around one
instanton

where        is a correction factor.

Oscillator approximation
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Multi-instanton transition amplitude

In dilute approximation

The quantal part can be written as a kind of  propagator
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Multi-instanton transition amplitude

In dilute approximation

The quantal part can be written as a kind of  propagator

T1 T2    T3 Tn-1



Oscillator approximation
Recall energy representation for K

For large τ only the lowest level contributes, so we have



Oscillator approximation



Oscillator approximation
We started from

Now we have

Since nothing depends on  τi we can perform the integral (exercise)



Energy splitting

Because in this limit only the the ground state survives, we have two lowest energies

Splitting is nonperturbative suppressed by the exponent from the classical action


