QCD lecture 6

November 18



Fermionic symmetries

Consider a set of fermion fields P (x) (with components ¥, (x)) interacting with
a gauge potential Af(x)

At this moment we do not specify the meaning of index »
- it can be color index
- it can be flavor (up, down, strange ...)
- it can be spinor index
- or some combination of the above

What is important is the unitary transformation of these fields

P(x) = UKB(K)  PT(x) = T (U (x)
Dirac conjugate:  W(x) = PpT(x)y° = PpT(x)Uf (x)v° = P (x)y°uf(x)y°
These matrices have both fermionic and space-time indices: u

uxm,gn — umn(x) 6(X _U) )
uxm,yn = (‘YOUT(X)‘YO)mn 6(X _U)



Fermionic symmetries

EXAMPLE: .
U(X) s eux(x)t

where «(x) € R and t is hermitean matrix (generator) that carries no

spinor indices.
Then multiplication is understood as (remember that (y9%)?=1):

(ﬁu)xm,yn — d4Z Zﬁxm,zp uzp,yn
. p
= | d*z6(x—2)5(z— (e_i“(z)t) (ei“(z)‘)
i (2=y] % mp pn
= 6mn6(x_ H) v

This means that (1t = 1 which implies that detU detU = 1

Since under such transformation the Grassmann integration measure changes as

:
B — e aer AP O]

the measure remains invariant for this kind of unitary transformations.



Chiral transformations

Recall free Dirac equation: (zc? — m) =10

and choose chiral representations for Dirac matrices

o O 11 L [0 &l _ _[-10
Tl ool T = 00T 001

0.1..2

where 75 = iy"y'y%y

Then Dirac equation can be rewritten as a set of two interconnected equations
(10 —io - V)b, —mibg = 0, (10; +io - V) 1vr — mip, = 0.

where a four component bispinor has been decomposed into two two component
Weyl spinors
, 1 5 1 — 5
y’):[;/jl‘] Note that: IIJRE( zy)ll) , II)LE( Zy)tl)
VR

For massless fermions (or very small masses)
left and right components are independent: chiral symmetry




Chiral transformations

5

Consider  U(x) = etx(x)7t

and recall properies of y> (y5)2 =1
W=y
By =0

5

which imply YUt (x)y°® = yoe_i“(x)yst‘yo = e**(X)Y7t — (x)

U="1U
det U = det U

and the integration measure is not invariant:

1 _
[DYDW] gz (DYDY

This leads to chiral anomaly, as discussed previously within the framework of
perturbation theory.



Chiral anomaly

5

for U(x) = e**x(x)r’t

:
We need to calculate (et U)2

Consider infintensimal transformation
(U = Dxmyn = i a(¥) (¥ t)mn 6(x —y)

and use (detU)_2 — ¢ 2uhll detU = 1_[)\-1 = exp (Z ) = et
i i
This is very handy formula, since we can expand easily a logarithm for small U

(detU)™® = exp —2tr In (1 +ie(x) v t8(x —y))]

~ Tl 2 5 !
2= exp |[—2itr (OC(X)Y to(x y))]

= exp —ijd4x a(x)A(X)] )

Note that trace is both for Dirac indices and for fermion species (¢) and space-time.
In the last step we have introduced anomaly function, which is poorly fefined

A(x) = =2tr (y>t) §(x — x)



Diggression
Consider matrix Aaaaz,ﬁby — Aaa,6b5(4)(x _ y)

with indices Q, [ — spinor
a,b — flavor

T,y — space-time

Then

trA = S:Sj/d‘lxd‘lyAaw,gby 5a56ab5(4)(a¢—y)

o, a,b

— S: S:/d4x¢4aa:c,aa:c — /d43j tI’(A) 5(4) (CE o CU)




Chiral anomaly

Change of integration measure under chiral transformation
[DII)DE — eifd4x ax(x)A(x) [Dll)Dm
where A(x) = =2t (y°t) §(x — x)
Note: tr gives zero and o gives infinity.
We need to properly define this by some regularization. Before doing that, let's
incorporate anomaly into the lagrangian (under functional integral):

L(x) = L(x) + x(x)A(x)

This looks like the lagrangian itself was not invariant under chiral transformation.



Chiral anomaly in gauge theory

Assume that our fermions couple to a (non)-Abelian gauge field through covariant
derivative

Dy=v"(0.—1ig tQAﬁ(x)) (note different convetion for g)

This means that matrix ¢ may have both flavor and color indices
(typicaly it is a product of flavor and color matrix).

Fujikawa proposed the following regularization ( M - regularization parameter, nothing

2 can depend on M )
A(x) =2 lim tr {yst?(— X)}é(x—y)

y—x,M—+o00 M2

where function F(s) has the following properties:

F0)=1,

F(+o0) =0,

sF (s)=0 ats =0 and at s = +00
Note that this regularization is gauge invarint due to the covariant derivative
(as a consequence vector current is conserved) .



Chiral anomaly in gauge theory

. B2
We need to calculate Ax)==2 lim {VS LF ( : 6(x —y)
y—x,M—+o00 M
use d*x .
S(x —u) = ik(x—y)
=) J 2n)* ©
to get i 2
d4k : 5 lDx ik(x—y)
AR) = =2 | G gt {V t?(_MZ }e

| 20 Mot

IR i {ystg(——(i’uw")z)}.

Second equality follows from:
lim F(0y) e "Y) = F(ik + 04)

y—x

Recall Dy=v"(0.—1igt*A{(x)) Change integration variable k — Mk

d*k N
A(x) :—ZME)rEOOMA‘J 2 tr {yst?(— [i}é—!—%] )}




Chiral anomaly in gauge theory

r A4
We have A(x)=-2 lim M* dk4 tr {yStﬁr( [1}6+DX] )}

M—+o00 M

Bel® .5 okDi B
We have to square —[1}€+ M] =k =2 = _<ﬂ

K)

We have used o= kA" =k, V {,\,M’Au} _ 32
kwl’ +$lk — (IJUDV —I'_D“ V {f)ﬂ )1/} — QAMDéL

(note that £ and D commute).
t)

k - D LY
We need to expand  F (kQ — 21 — — (Z) )

i 1/M
vy M ) in powers of 1/

We expect all powers lower than 4 to give zero , power 4 gives result independent of M
higher powers vanish in the limit M —+o0o Moreover we need 4 gamma matrices

to get non-zero result from the Dirac trace. This means that only second term in

Taylor expansion is needed.



Chiral anomaly in gauge theory
s e oo o3

Expanding: s D BN LD o
I(I"ZIM(M) =5 (l‘)ﬂi F{k) =

we get

Alx) = — J(g:; F (k2) tr (y uy)”')

We can now integrate over d*k



Chiral anomaly in gauge theory
A(x) = =2 lim M4J (g:): tr {ys tF (— [ué +%] ) }

Expanding: 9 4
o Fle-st- () )@ Fw-

Alx) = — J(g:; F (k2) tr (y uy)”')

We can now integrate over d*k

) =T,
F(+o0) =0,
sF (s)=0 ats =0 andat s = +00




Chiral anomaly in gauge theory

Integration over d*k

Go to Euclidean metric (lecture 2)

KO =iky —  d% = dkdkrdEPdE? = idkdErdEPdE? = id kg
3 3

= K= () =) = = ()’ =Y () = k3

1=1 1=1

[ dEF0) i [ d*hp (k)



Chiral anomaly in gauge theory

Squaring covariant derivative:

wi = DYD{ vuvv

1
= z D;L D;/ ({Yva} + h’u»yv])

1
= D+ 7 [DF, DYy v+



Diggression

[D¥, D”] - = (8" — igA*)(8” — igA”)Y — (0¥ — igA”) (D" — igA*)Y

/"\

= Q0" — ig (O A”) Y — igAY (Om)) — igAr (9¥1p) — g* A* A

—

— 0V +ig (0" A*) 1 + ig Ar (8V9) + igAv (0#) + g° AV ARy

= —ig{(0"A”) — (0"A")}y — g* [A*, A"y = —igF™yY



Chiral anomaly in gauge theory

Dlxl DZ YuYv
1

z D;L D;/ ({Vuﬂ/v} + h’uﬂ/v])

]
D - 3 DL D] [, ¥l

D2 g

X Ztanv h/u)YV]

We need a fourth power of [), traced with vy’ so only a commutator

squared survives.



Chiral anomaly in gauge theory

Calculating traces:

. 2
tr [f\)ﬁf (_%f“ [ /,u, )1/] F'Lw)

2

=~ T () T (v° [ v] [0 v0]) P2 FE

2

g a LV o
= —ZT1‘<fff)Tl( )F‘ FY

/ /;L/V /pla

"

—4dic v po

= P s T T (%)

Puting things together
—im2

Ve

1 1/ N 5 4
Alz) = _(27()4/(1%]: (k%) tr (’y tID,I)

NS

-
ngs:w,ng#VFéw Tr(tatbt)

J LV (o} a
- ~ 16722 AwpaFl ()Fp( )Tl(ftb)



Chiral anomaly in gauge theory

Calculating traces:

. 2
tr [757& (_ ?;lgf( [),u /1/] F,uu)

2

=~ T T 07 [n] Do) BEF

2
= —gz Tx (1‘ f”f/))\Tl (, s g g 2 ,0) FHv pPo

~~

—4icpy po

- /I:QQ‘S;LI/ngéLVFbpa Tr (f”fhf)

Puting things together
—im2

e in QED no trace Alzy = - L 4/(14kf”(k2) tr (’)/Stlpi)

e if t=1 the integral of A(x) (27) N - .
is an integer Chern-Pontryagin index ig%euvpo FA" F{7 Tr(tot0t)
that charaterizes topological g2 » " i
properties if the gluon field T ™) Ewpaty” (z)Fy” (z) Tr (t t t)



Anomaly of the axial current

Remember that the free lagrangian changes due to the anomaly in the following way

L(x) = L(x) + a(x)A(x)

If we add a source we get an extra term

L£(x) = L(x) + a(x)A(x) + JE(x) Opa(x)

We need to integrate this to get the action, last term integrate by parts and require
that the total change of action is zero:
92
PuJtx)). = —WGHVPGFEV(X)FgG(x) tr (t%t°t)

A

where (), is an average over the fermion fields, in a fixed gauge field configuration.



Anomaly in the light quark sector

Recall Noether theorem:

global symmetry implies conserved current(s)

To calculate conserved currents promote the symmetry to the local one,
calculate the change of action (as disscused on previous slide).
Consider SU(2) chiral transformation:

. ,. U
U(x) = exp ('zﬁﬁ,/"a“(;r) ta) Y = [ d ]

Conserved current:

t %y



Anomaly in the light quark sector

Consider diagonal (neutral) axial current generated by matrix

[
t =
in falovor space and unit matrix in the color (gauge) space. Then:

tr (t%t°t) = treotour (t*t°) X traavour (t) = 0
SR
1—1=0

Anomaly vanishes. Physically up quark contribution is cancelled by d quark.



Anomaly in the light quark sector

Consider diagonal (neutral) axial current generated by matrix

)

coupled to QED. In flavor space ¢ =

o= ;

therefore anomaly is proportional to

e
5)

trﬂavour (ta) X trColour (1c010ur) = T

electric charge is a matrix

S WIN




Atiyah-Singer theorem

Dirac matrices: ,\/o — 10 _ ,\’,7; = 0 o
0 —1 | —o; 0
hermitean antihermitean

Dirac operator is neither hermitean not antihermitean. Let's go to Euclidean space

: 0 ; O : 0 4
;'170 = ZI4 == 80 = a0 = —Z—4 = _284 AO = ’[,A4 3 = Y
Ox Oz

Then: P, = 19 +~"0) —ig (A2° — Ak/F) ¢
= YO+ *0 +ig (Agy* + AlAF) t°
4
(05 +1igAlt®) v

—1

3

is hermitean becuse all gamma matrices are antihermitean.



Atiyah-Singer theorem

Dirac oprtator in Euclidean space can be therefore diagonalized in an orthonormal
basis of eigenfunctions ¢«

Dyxdr(x) = Acdr(x) Z(bk(X)CbL(y) = 5(x —y)
Jd4xE b (x)drr (x) = Sk k
DZ
Anomaly function  A(x) =-2 y_)x}’i\dm_)+ootr {YS tF (- sz> } 5(x —y)
fort=1
can be rewritten as: | . 02 ;
Alx) = —Zy_ml’l\ﬁn_)m tr {V F ( sz> % d>k(><)¢k(y)}




Atiyah-Singer theorem

We can connect this result with the previous one, rewritten in Euclidean metric

2

& [t equs0 R et
P d*x. A(x) = 1 F A a4 t 5
=g | T d=glu ¥ F| g )| ¥ SR s

We can relate eigenvalues of ¢«(x) to eigenvalues of v’ dx(x)
since {y>,} =0

So have Dx(v’dk(x)) = —Ak(¥Y’dk(x)) This means that for Ak #0
functions ¢ =v°dx and ok are different eigenfunctions of 1, hence

Jd“xE ol (x)y° dr(x) = J d*x, 1 (x)dw(x) = 0

Therefore only eigenfunctions with Ax =0 so called zero modes contribute
to the anomaly.



Atiyah-Singer theorem

Anomaly expressed in terms of the zero modes

2

337[2 Jd4xE €ijkt F{j(x) [0 0 ) e = Z Jd4XE ¢L(X)Y5¢k(>¢)
k[Ax=0

Since {y°,x} =0 zero modes can be chosen to be also eigenstates of >
so called left and right zero modes

Db (x) =0, v>dy(x) = +by (x)
wx(b]_(x) — O ) ysd)L(x) = _q)]_(x)

Because zero modes are normalized

92

32m2
where n, and n, are numbers of right and left zero modes. The difference
is an integer. This formula is called Attiyah-Singer index theorem.
There exist nonperturbative, nontrivial configurations of the gauge field
with above property — instantons.

J d4XE €ijkl Fiaj (x) FEL(X) tr(tatb) =Ty — I,



