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QM - reminder
Schrödinger eq.

propagates solution from a =(xa ,ta) to b=(xb ,tb)
(remember H is an operator)
Define propagator:

recall Dirac notation                                      and plane wave solution
complex conjugate  

completness relation

We shall use the following normalization:



Path integral for the propgator
Discretize time

set 

“slice” evolution operator

insert inbetween unity



Path integral for the propgator
Decompose hamiltonian

and use:

which is true only for small ε

Baker-Cambell-Hausdorff: define C

then
~ ε2

Therefore



Path integral for the propgator
We need to calculate
(distinguish operators from eigenalues)

recall normalization

where we have used

bur remember:



Path integral for the propgator

Define functional integration measure
integration over all trajectories from
a to b

and use definition of action 

to arrive at

special role of the classical trajectory
i.e. stationary point of action



Euclidean path integral
Change

then

for large τ only the ground state survives

Feynman-Kac formula

In Euclidean one can perform computer simulations



Gaussian functional integrals
Assume that path integral is the way we formulate QM (and QFT). All properties
and equations are derived from the path integral. In practice we deal with 
Gaussian functional integrals:

Propagator:

To evaluate K decompose the quantal trajectory into the classicel one

and a fluctuation

Since terms linear in y vanish

for convenience T = tb - ta



Gaussian functional integrals
Since           is fixed we have
and

where

Recall: 

identities:
(integration by parts)

we get
definition of D



Gaussian functional integrals

D is a Sturm-Liouville operator

Example:

Use yn basis to expand                                           then

and 



Path integral revisited
We have performed dp integral using a specific form of the hamiltonian

however we do need to use this information. We only have to remember

Let’s recalculate

Hence:



Transition amplitudes
Consider matrix element of a position operator  Q  measuring expectation value of
the position at time t1

We have

which lead to

Similarly for 



Transition amplitudes
Define time dependent operator                                          and

then  

operators                                                functions

Note that l.h.s is very different when t1 > t2 , whereas r.h.s. is the same because 
classical  trajectories commute. Introduce time ordering T

then

generally
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Functional sources an derivatives
One can derive transtion amplitudes with the help of generating functional

where j(t) is some arbitrary function of time and Q(t) is and operator
Amplidudes are given as functional derivatives

Functional derivatives act essentially as regular differenciation with one additional
property

values of function j(t) at different times 
are independent variables

Generating functional has path integral representation (Lagrange)
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Ground state projection
Initial and final states do not have to be position eigenstates. Consider some 
operator O and some state ψ

Then

In practice we often need matrix element when ininitial and final states are the ground
states:

Assume that E0 = 0 (shifting energy) and multiply the hamiltonian by

Then all factors go to 0 for                   except for the ground state



Ground state projection
With                 prescripton

The generating functional is then vacuum expectation value and reads (Hamilton)

or (Lagrange)

Normalization



Functional integral for scalar field
One can easily translate the QM functional formalism to QFT with the help of 
the following correspondence

and the analogue of the generating functional reads

The hamiltonian reads

and can be obtained from the Lagrangian



Functional integral for scalar field
Since the hamiltonian is quadratic in Π we can perform Gaussian integral

where

Note that in front of V  plays no role if interaction vanishes for large times.
Then 

where

and



Scalar propagator
The free functional integral can be easily performed, because it is Gaussian in φ

Recall

and we get

where is an inverse of                                                                  which is
obtained by integration by parts:

_



Scalar propagator
_Inverse of                                                                 can be evaluated in momenum space

yielding

This is of course the same result as the one obtained in the canonical approach

Exercise: show that the pole structure of the two expressions is the same



Fermions 
and Grassmann variables

Hermann Günther Grassmann (1809 Szczecin – 1877 Szczecin)

Fermion fields anticommute. How to take this into account in functional integral?
Introduce Grassmann variables:

Linear space spanned by ψi's is called Grassmann algebra
Consider first N = 1

any function has a form                             where a is a number and

so

We have to define left and right derivatives

Berezin integral:                                                 and

The only solution consistent with these requirements
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Functions of Grassmann variables
Consider now N Grassmann variables

The most general function:

Only linear terms in each variable are possible. Note that it must be

alternatively

For consitency with previous definition

Terms where at least one variable is missing do not contribute to the integral because

Integration measure                                                assures that



Change of variables
Consider                            where                     are also Grassmann variables

Last term of the function

From this we conclude

(same as for scalar integral)



Consider

where M is              antisymmetric numeric matrix (real or complex). Such
integral is non-zero only if N is even. For N = 2

and

Hence:

For general even N we can always "diagonalize"        by special orthogonal matrix

Define       

Gaussian integral



Gaussian integral
After change of variables we get

But                           and we have

This is inverse with respect to the Gaussian integral for ordinary variables

We will also need integrals with Grassmann sources ηi

Changing variables

we obtain



Gaussian integral for 2N variables

Consider                                                                 where ψ and ξ are independent 

Then (exercise)

Define and inverse

Integrations

which leads to

or generally

with sources

Complex Grassmann variables



Functional integral for fermions
Like in the cas of the scalar field we expect

where       and       are complex Grassmann sources. The propgataor is obtained by

The functional 
integral reads 

To obtain the propagator we have to use

and ignore det(M) as it does not depend on sources.



Functional integral for photons
Here we would naively think that we will have a scalar integral
for each component         However gauge invariance complicates things.
Even more so for QCD. 
Let's first write a naive functional integral

This is a Gaussian integral, because               is quadratic in       (exercise) 

We need to invert                             to perform the integral over  



Functional integral for photons
Inverting photonic operator: find α and β

This operator is not invertible: some eigenvalues are zero. These flat directions

correspond to the projection of              along

Landau gauge
Decompose

in the following way:

The functional measure can be therefore factorized



Functional integral for photons
We have

So the                  part is purely transverse, and

Recall                                                    but vector current is conserved

and                      is an infinite constant that has to be divided out.

When restricted to the transverse directions                           is invertible and we get

again         prescription selects the ground state for large times. 



General covariant gauges
Note that to get                                                               we demanded

This is called Landau or Lorentz gauge.
In general we may require:

This can be done by introducing a delta function into the functional integral

where      is an arbitrary constant. Note that for fixed      we break Lorentz invariance.
To mitigate this problem we integrate over all     's with the Gaussian weight. We can
do this Gaussian integral and integrating by parts (exercise) we arive at

We need to find inverse of



General covariant gauges
To invert

we look for the inverse  operator in a form:

The result reads (exercise) 

Landau gauge:

Feynman gauge:  

As we will see in QCD the gauge condition will be more like
and then we will need a Jacobian (to be discussed later) 


