QCD lecture 4

November 4

Infrared divergences

$$S_F^R = \frac{i}{p} \left(1 + \frac{\alpha(\mu^2)}{4\pi} C_F \left(\ln\left(\frac{-p^2}{\bar{\mu}^2}\right) - 1 \right) \right)$$

Divergent for $p^2 = 0$. This is infrared divergence (from the lower int. limit). It can be regularized by going to the number of dimensions higher than 4. Before expansion, change $\varepsilon \rightarrow -\kappa$

$$S_F^R(p) = \frac{i}{p} \left(1 - \frac{\alpha_s}{4\pi} C_F \left(\frac{\bar{\mu}^2}{-p^2} \right)^{\varepsilon} \left(\frac{1}{\varepsilon} + 1 \right) + \frac{\alpha_s}{4\pi} C_F \frac{1}{\varepsilon} \right)$$

Infrared divergences

$$S_F^R = \frac{i}{p} \left(1 + \frac{\alpha(\mu^2)}{4\pi} C_F \left(\ln\left(\frac{-p^2}{\bar{\mu}^2}\right) - 1 \right) \right)$$

Divergent for $p^2 = 0$. This is infrared divergence (from the lower int. limit). It can be regularized by going to the number of dimensions higher than 4. Before expansion, change $\varepsilon \rightarrow -\kappa$

$$S_F^R(p) = \frac{i}{p'} \left(1 - \frac{\alpha_s}{4\pi} C_F \left(\frac{-p^2}{\bar{\mu}^2} \right)^{\kappa} \left(-\frac{1}{\kappa} + 1 \right) - \frac{\alpha_s}{4\pi} C_F \frac{1}{\kappa} \right)$$
$$= \frac{i}{p'=0} \frac{i}{p'} \left(1 - \frac{\alpha_s}{4\pi} C_F \frac{1}{\kappa} \right).$$

Infrared divergencies

One cannot distinguish a single electron from an electron accompanied by a zero energy foton or a collinear foton (for massless fermion). One has to sum over such degenerate states.

Infrared divergencies

Here IR singularities cancel out

Infrared singularities

IR singularite is arise when the theory has massless particles (photon, gluon)

- when energy of photon (gluon) is small soft singularity
- when for massless fermion photon (gluon) is parallel to that fermion

 collinear singularity

Bloch – Nordsieck theorem (baically derived for QED) Kinoshita – Lee – Nauenberg theorem (generalized to QCD)

Kinoshita-Lee-Nauenberg (KLN) theorem assures that a summation over degenerate initial and final states removes all infrared (IR) divergences in QCD.

This very broad topic, beyond the scope of this lecture

QCD corrections to parton model

photon scatters off the gluon

QCD corrections to parton model

QCD corrections to parton model yp = E(1, 0, 0, 1) $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ &$ = z(yp) $\frac{1}{p'^2} = \frac{1}{(yp-k)^2} = \frac{1}{2ypk} = \frac{1}{2E\omega(1-\cos\theta)}$

QCD corrections to parton model

$$\frac{d\omega d\cos\theta}{2E\omega(1-\cos\theta)}$$

0

• soft (cancel)
$$\omega \to 0$$

- collinear (remain)
$$heta
ightarrow 0$$

p' = z(vp)

yp

In dimensional regularization:

$$\left(\frac{Q^2}{\mu^2}\right)^{\kappa} \frac{1}{\kappa} = \frac{1}{\kappa} + \log\left(\frac{Q^2}{\mu^2}\right)$$

Poles can be absorbed into bare parton densities. Logs can be summed up to all orders. Factrozation. Coefficients of the poles are universal functions of z

a quark of the longitudinal momentum fraction z in initial quark

a quark of the longitudinal momentum fraction z in initial quark

$$P_{qq}(z) = C_F \left(\frac{1+z^2}{1-z}\right)_+$$

a quark of the longitudinal momentum fraction z in initial quark

$$P_{qq}(z) = C_F \left(\frac{1+z^2}{1-z}\right)_+ \qquad \text{``Plus'' distribution:}$$

$$\int dz \ (\ldots)_+ g(z) = \int dz \ (\ldots) \left[g(z) - g(1)\right]$$

appears because of the virtual diagram for which z = 1

Different diagrams give extra contribution at z = 1 in different gauges. The result is the same: no singularity at z = 1.

 $P_{qG}(z) = P_{\overline{q}G}(z), \qquad P_{Gq}(z) = P_{G\overline{q}}(z),$

 $P_{qq}(z) = P_{Gq}(1-z), \ P_{GG}(z) = P_{GG}(1-z), \ P_{qG}(z) = P_{qG}(1-z)$

QCD corrections to parton model

QCD corrections to parton model

DGLAP Evolution Equation

$$\frac{d}{d\ln Q^2} = Q^2 \frac{d}{dQ^2} \implies q(x, Q^2) = q(x, \mu^2) + \frac{\alpha_s}{2\pi} \ln \frac{Q^2}{\mu^2} P_{qq} \otimes q(\mu^2) + \dots$$

Evolution eq. Dokshitzer, Gribov, Lipatov Altarelli, Parisi

$$\frac{d}{d\ln Q^2}q(x,Q^2) = \frac{\alpha_s}{2\pi}P_{qq} \otimes q(Q^2)$$

up all powers $\frac{\alpha_s}{2\pi}\ln\frac{Q^2}{\mu^2}$.

Such equation sums up all powers

Leading Log Approximation (LLA)

DGLAP Evolution Equations

Full set of DGLAP equations:

$$Q^2 \frac{d}{dQ^2} q_i(x, Q^2) = \frac{\alpha_s(Q^2)}{2\pi} \left[P_{qq} \otimes q_i(Q^2) + P_{qG} \otimes G(Q^2) \right]$$
$$Q^2 \frac{d}{dQ^2} G(x, Q^2) = \frac{\alpha_s(Q^2)}{2\pi} \left[P_{Gq} \otimes \sum_i q_i(Q^2) + P_{GG} \otimes G(Q^2) \right]$$

We need an input at one scale Q_0^2 and then we can evolve them up to some other Q^2 note that index *i* runs over quarks and antiquarks when we construct a difference, called non-singlet, gluons cancel

$$q_i^{NS}(x,Q^2) = q_i(x,Q^2) - \overline{q}_i(x,Q^2)$$

DGLAP Evolution Equations

Define:

singlet

$$q^{S}(x,Q^{2}) = \sum_{i} \left(q_{i}(x,Q^{2}) + \overline{q}_{i}(x,Q^{2}) \right)$$
$$q^{NS}_{i}(x,Q^{2}) = q_{i}(x,Q^{2}) - \overline{q}_{i}(x,Q^{2})$$
$$= q_{i}(x,Q^{2}) - \frac{1}{2n_{f}}q^{S}(x,Q^{2})$$

nonsinglet

DGLAP Evolution Equations

$$Q^2 \frac{d}{dQ^2} q^{NS}(x, Q^2) = \frac{\alpha_s(Q^2)}{2\pi} P_{qq} \otimes q^{NS}(Q^2)$$

$$Q^{2} \frac{d}{dQ^{2}} q^{S}(x, Q^{2}) = \frac{\alpha_{s}(Q^{2})}{2\pi} \left[P_{qq} \otimes q^{S}(Q^{2}) + 2n_{f} P_{qG} \otimes G(Q^{2}) \right]$$
$$Q^{2} \frac{d}{dQ^{2}} G(x, Q^{2}) = \frac{\alpha_{s}(Q^{2})}{2\pi} \left[P_{Gq} \otimes q^{S}(Q^{2}) + P_{GG} \otimes G(Q^{2}) \right]$$

DGLAP for Mellin moments

Moments of the convolution

$$M_{\underline{n}} = \int_{0}^{1} dx \, x^{n-1} P \otimes f = \int_{0}^{1} dx \, x^{n-1} \int_{0}^{1} dz \int_{0}^{1} dy \delta(zy - x) P(z) f(y)$$
$$= \int_{0}^{1} dz \, z^{n-1} P(z) \int_{0}^{1} dy \, y^{n-1} f(y) = P_n \, f_n = \gamma^n f_n$$

 γ^n anomalous dimension

convolution is replaced by a product

DGLAP for Mellin moments

$$\frac{\alpha_s(t)}{2\pi} = 2\,a_s(t) = 2\,\frac{1}{\beta_0 t}$$

Anomalous dimensions

$$\begin{split} \gamma_{qq}^{n} &= C_{F} \left[-2\sum_{k=1}^{n+1} \frac{1}{k} + \frac{3}{2} + \frac{1}{n} + \frac{1}{n+1} \right], \\ \gamma_{qG}^{n} &= \frac{1}{2} \frac{2+n+n^{2}}{n(n+1)(n+2)}, \\ \gamma_{Gq}^{n} &= C_{F} \frac{2+n+n^{2}}{n(n^{2}-1)} \\ \gamma_{Gq}^{n} &= 2C_{A} \left[\frac{11}{12} - \sum_{k=1}^{n+2} \frac{1}{k} + \frac{1}{n-1} - \frac{1}{n} + \frac{1}{n+1} \right] - \frac{n_{f}}{3} \end{split}$$

Valnce quark # conservation

$$\gamma_{qq}^{n} = C_{F} \left[-2\sum_{k=1}^{n+1} \frac{1}{k} + \frac{3}{2} + \frac{1}{n} + \frac{1}{n+1} \right]$$
$$\gamma_{qq}^{1} = 0 \quad \to \quad \frac{dq_{n}^{NS}(t)}{dt} = 0$$

$$\int dx \left[q_i(x, Q^2) - \overline{q}_i(x, Q^2) \right] = \text{const.} = \int dx q_{Vi}(x, Q^2)$$

Momentum conservation

consider moment n = 2 for the singlet eqs.

 $q_2^S(t)$

$$\begin{aligned} \frac{d}{dt}q_2^S(t) &= -\frac{2}{\beta_0 t} \left[\frac{4C_F}{3} q_2^S(t) - \frac{n_f}{3} G_2(t) \right] = -\frac{2}{\beta_0 t} f(t) \\ \frac{d}{dt} G_2(t) &= +\frac{2}{\beta_0 t} \left[\frac{4C_F}{3} q_2^S(t) - \frac{n_f}{3} G_2(t) \right] = +\frac{2}{\beta_0 t} f(t) \\ + G_2(t) &= \text{const.} \\ &= \int dx \, x \left[\sum_i \left(q_i(x, Q^2) + \overline{q}_i(x, Q^2) \right) + G(x, Q^2) \right] = 1 \end{aligned}$$

value of 1 is a requirement for a proper normalization

$\begin{aligned} & Gluon \text{ momentum} \\ & \frac{d}{dt}q_2^S(t) = -\frac{2}{\beta_0 t} \left[\frac{4C_F}{3} q_2^S(t) - \frac{n_f}{3}G_2(t) \right] = -\frac{2}{\beta_0 t} f(t) \\ & \frac{d}{dt}G_2(t) = +\frac{2}{\beta_0 t} \left[\frac{4C_F}{3} q_2^S(t) - \frac{n_f}{3}G_2(t) \right] = +\frac{2}{\beta_0 t} f(t) \end{aligned}$

Form a linear combination

$$\frac{4C_F}{3}\frac{d}{dt}q_2^S(t) - \frac{n_f}{3}\frac{d}{dt}G_2(t) = \frac{d}{dt}f(t) = -\frac{2}{\beta_0 t} \left[\frac{4C_F}{3} + \frac{n_f}{3}\right]f(t)$$

since $c = \frac{4C_F}{3} + \frac{n_f}{3} > 0$

the solution is trivial and tends to 0

$$\mathbf{f}(t) = f(t_0) \left(\frac{t}{t_0}\right)^{-2c/\beta_0} \underset{t \to \infty}{\longrightarrow} 0$$

Gluon momentum

We have two asymptotic constraints:

$$f(t) = \frac{4C_F}{3} q_2^S(t) - \frac{n_f}{3} G_2(t) = 0 \qquad q_2^S(t) + G_2(t) = 1$$

which give

$$q_2^S(t) = \frac{n_f}{4C_F} G_2(t) \qquad \rightarrow \qquad \left[\frac{n_f}{4C_F} + 1\right] G_2(t) = 1$$

numerically we have

$$G_2(t) = \frac{1}{\frac{n_f}{4C_F} + 1} = \frac{16}{16 + 3n_f} = \underset{n_f=3}{0.64}, \underset{n_f=4}{0.57}, \underset{n_f=5}{0.52}, \underset{n_f=6}{0.47}$$

asymptotically gluons carry around 50% of total momentum!

Numerical solutions

Numerical solutions

HERA F_2 : data vs. theory

FIG. 2: Structure function F_2 as a function of Q^2 based on HERA-I measurements of H1 [2, 3] and ZEUS [4] collaboration compared to results from fixed target experiments BCDMS [5] and NMC [6].

DGLAP vs. BFKL

small x large W

W – gamma+proton energy

large x small W

Axial anomaly

pseudoscalar density

Gauge invariance of QED (and QCD):

divergence of axial-vector current:

$$q_{\mu}j^{\mu}(q) = \bar{u}(p')\gamma^{\mu}u(p) = 0$$

 $q_{\mu}j_{5}^{\mu}(q) = \bar{u}(p')\gamma^{\mu}\gamma_{5}u(p) = 2m\,\bar{u}(p')\gamma_{5}u(p)$

Axial current is conserved for massless fermions: chiral symmetry

It is not possible to maintain both symmetries when loop corrections are included. This is called: AXIAL ANOMALY

photons are bosons and they are not distinguishable hence amplitude has to be symmetrized

 $q = k_1 + k_2$

Skipping coupling constants (charges) the amplitude reads:

$$T_{\mu\nu\lambda} = -i \int \frac{d^4p}{(2\pi)^4} \operatorname{Tr} \left[\frac{i}{p'-m} \gamma_{\lambda} \gamma_5 \frac{i}{(p'-q')-m} \gamma_{\nu} \frac{i}{(p'-k'_1)-m} \gamma_{\mu} \right]$$
$$-i \int \frac{d^4p}{(2\pi)^4} \operatorname{Tr} \left[\frac{i}{p'-m} \gamma_{\lambda} \gamma_5 \frac{i}{(p'-q')-m} \gamma_{\mu} \frac{i}{(p'-k'_2)-m} \gamma_{\nu} \right]$$

Naively we expect:

$$k_1^{\mu}T_{\mu\nu\lambda} = k_2^{\nu}T_{\mu\nu\lambda} = 0 \qquad q^{\lambda}T_{\mu\nu\lambda} = 2mT_{\mu\nu}$$

Vector current, first diagram:

$$k_1^{\mu}T_{\mu\nu\lambda} > \operatorname{Tr}\left[\gamma_{\lambda}\gamma_5 \frac{i}{(\not p - q) - m}\gamma_{\nu}\frac{i}{(\not p - \not k_1) - m}\not k_1\frac{i}{\not p - m}\right]$$

use trick:

$$k_1 = (p - m) - ((p - k_1) - m)$$

we get:

$$= i \operatorname{Tr} \left[\gamma_{\lambda} \gamma_{5} \frac{i}{(\not p - q) - m} \gamma_{\nu} \frac{i}{(\not p - \not k_{1}) - m} \right] - i \operatorname{Tr} \left[\gamma_{\lambda} \gamma_{5} \frac{i}{(\not p - q) - m} \gamma_{\nu} \frac{i}{\not p - m} \right]$$

Vector current, first diagram:

$$k_1^{\mu}T_{\mu\nu\lambda} > \operatorname{Tr}\left[\gamma_{\lambda}\gamma_5 \frac{i}{(\not p - q) - m}\gamma_{\nu}\frac{i}{(\not p - \not k_1) - m}\not k_1\frac{i}{\not p - m}\right]$$

use trick:

$$k_1 = (p - m) - ((p - k_1) - m)$$

we get:

$$= i \operatorname{Tr} \left[\gamma_{\lambda} \gamma_{5} \frac{i}{(\not p - q) - m} \gamma_{\nu} \frac{i}{(\not p - \not k_{1}) - m} \right] - i \operatorname{Tr} \left[\gamma_{\lambda} \gamma_{5} \frac{i}{(\not p - q) - m} \gamma_{\nu} \frac{i}{\not p - m} \right]$$

same trick with the second diagram gives

$$= i \operatorname{Tr} \left[\gamma_{\lambda} \gamma_{5} \frac{i}{(\not p - q) - m} \gamma_{\nu} \frac{i}{\not p - m} \right] - i \operatorname{Tr} \left[\gamma_{\lambda} \gamma_{5} \frac{i}{(\not p - \not k_{2}) - m} \gamma_{\nu} \frac{i}{\not p - m} \right]$$

$$\begin{aligned} k_1^{\mu} T_{\mu\nu\lambda} \sim \int \frac{d^4 p}{(2\pi)^4} \\ \left\{ \operatorname{Tr} \left[\gamma_{\lambda} \gamma_5 \frac{i}{(p-q) - m} \gamma_{\nu} \frac{i}{(p-k_1) - m} \right] - \operatorname{Tr} \left[\gamma_{\lambda} \gamma_5 \frac{i}{(p-k_2) - m} \gamma_{\nu} \frac{i}{p-m} \right] \right\} \\ \text{change variable in the first integral } p \to p + k_1 \end{aligned}$$

It seems we get zero

 $q = k_1 + k_2$

Skipping coupling constants (charges) the amplitude reads:

$$T_{\mu\nu\lambda} = -i \int \frac{d^4p}{(2\pi)^4} \operatorname{Tr} \left[\frac{i}{p-m} \gamma_{\lambda} \gamma_5 \frac{i}{(p-q)-m} \gamma_{\nu} \frac{i}{(p-k_1)-m} \gamma_{\mu} \right] -i \int \frac{d^4p}{(2\pi)^4} \operatorname{Tr} \left[\frac{i}{p-m} \gamma_{\lambda} \gamma_5 \frac{i}{(p-q)-m} \gamma_{\mu} \frac{i}{(p-k_2)-m} \gamma_{\nu} \right]$$

Naively we expect:

$$q^{\lambda}T_{\mu\nu\lambda} = 2mT_{\mu\nu}$$

Axial current $q^{\lambda}T_{\mu\nu\lambda}$

To calculate

we use the following trick:

$$\begin{aligned} q \gamma_5 &= -\gamma_5 q' \\ &= \gamma_5 \left[(p - q) - m \right] - \gamma_5 \left[p - m \right] \\ &= \gamma_5 \left[(p - q) - m \right] + \left[p - m \right] \gamma_5 + 2m\gamma_5 \end{aligned}$$

and for the first diagram we obtain

$$q^{\lambda} \left[\frac{i}{\not p - m} \gamma_{\lambda} \gamma_{5} \frac{i}{(\not p - q) - m} \right] = 2m \frac{i}{\not p - m} \gamma_{5} \frac{i}{(\not p - q) - m} + i \frac{i}{\not p - m} \gamma_{5} + i \gamma_{5} \frac{i}{(\not p - q) - m}$$

Axial current Sum from the two diagrams $q^{\lambda}T_{\mu\nu\lambda} = 2mT_{\mu\nu} + \Delta^{(1)}_{\mu\nu} + \Delta^{(2)}_{\mu\nu}$

$$\begin{split} & \Delta_{\mu\nu}^{(1)} + \Delta_{\mu\nu}^{(2)} \\ &= \int \frac{d^4 p}{(2\pi)^4} \operatorname{Tr} \left[\frac{i}{\not p - m} \gamma_5 \gamma_\nu \frac{i}{(\not p - \not k_1) - m} \gamma_\mu + \gamma_5 \frac{i}{(\not p - q) - m} \gamma_\nu \frac{i}{(\not p - \not k_1) - m} \gamma_\mu \right] \\ &+ \int \frac{d^4 k}{(2\pi)^4} \operatorname{Tr} \left[\frac{i}{\not p - m} \gamma_5 \gamma_\mu \frac{i}{(\not p - \not k_2) - m} \gamma_\nu + \gamma_5 \frac{i}{(\not p - q) - m} \gamma_\mu \frac{i}{(\not p - \not k_2) - m} \gamma_\nu \right] \end{split}$$

Axial current $\Delta_{\mu\nu}^{(1)} = \int \frac{d^4p}{(2\pi)^4} \operatorname{Tr} \left[\frac{i}{p-m} \gamma_5 \gamma_{\nu} \frac{i}{(p-k_1)-m} \gamma_{\mu} - \frac{i}{(p-k_2)-m} \gamma_5 \gamma_{\nu} \frac{i}{(p-q)-m} \gamma_{\mu} \right]$ $\Delta_{\mu\nu}^{(2)} = \int \frac{d^4p}{(2\pi)^4} \operatorname{Tr} \left[\frac{i}{p'-m} \gamma_5 \gamma_{\mu} \frac{i}{(p'-k'_2)-m} \gamma_{\nu} - \frac{i}{(p'-k'_2)-m} \gamma_5 \gamma_{\mu} \frac{i}{(p'-q'_2)-m} \gamma_{\nu} \right]$ The question is: are $\Delta_{\mu\nu}^{(1,2)}$ equal zero? Changing variables $p \rightarrow p + k_2$ seems to nullify $\Delta_{\mu\nu}^{(1,2)}$. $p \rightarrow p + k_1$

However,
$$\Delta_{\mu\nu}^{(1,2)} \sim \int dp p^3 \frac{1}{p^2} \sim \int dp p$$
 are UV divergent

Due to the minus sign the divergence is only linear

Mathematical diggression

Consider the integral that is naively zero:

$$\int_{-\infty}^{\infty} dx \left[f(x+a) - f(x) \right]$$
$$f(\pm \infty) \neq 0.$$

However, if

we can calculate this integral by Taylor expansion:

$$\int_{-\infty}^{\infty} dx \left[f(x+a) - f(x) \right] = a \left[f(\infty) - f(-\infty) \right] + \frac{a^2}{2} \left[f'(\infty) - f'(-\infty) \right] + \dots$$

it may happen that $\neq 0$

Mathematical diggressionConsider Euclidean integral:
$$\Delta(\vec{a}) = \int d^n \vec{r} [f(\vec{r} + \vec{a}) - f(\vec{r})]$$
expand in a $= \int d^n \vec{r} \, \vec{a} \cdot \vec{\nabla} f(\vec{r}) + \dots$ apply Gauss theorem $= \vec{a} \cdot \vec{n} S_n(R) f(\vec{R})$ where $\vec{n} = \frac{\vec{R}}{R}$ and $S_n(R)$ is a surface of the n sphere, R is regulator.For even n $S_n(R) = \frac{2\pi^{n/2}}{(n/2 - 1)!}R^{n-1} = \begin{cases} 2\pi R & \text{for } n = 2\\ 2\pi^2 R^3 & \text{for } n = 4 \end{cases}$

$$T_{\mu\nu\lambda} = -i \int \frac{d^4p}{(2\pi)^4} \operatorname{Tr} \left[\frac{i}{p'-m} \gamma_\lambda \gamma_5 \frac{i}{(p'-q')-m} \gamma_\nu \frac{i}{(p'-k'_1)-m} \gamma_\mu \right] -i \int \frac{d^4p}{(2\pi)^4} \operatorname{Tr} \left[\frac{i}{p'-m} \gamma_\lambda \gamma_5 \frac{i}{(p'-q')-m} \gamma_\mu \frac{i}{(p'-k'_2)-m} \gamma_\nu \right]$$

define shift vector $a = \alpha k_1 + (\alpha - \beta)k_2$ and amplitude difference: $\Delta_{\mu\nu\lambda}(a) = T_{\mu\nu\lambda}(p \rightarrow p + a) - T_{\mu\nu\lambda}$

Strategy:

$$q^{\lambda}T_{\mu\nu l}(a) = q^{\lambda} (T_{\mu\nu l}(a) - T_{\mu\nu l}(0)) + q^{\lambda}T_{\mu\nu l}(0)$$

= $q^{\lambda}\Delta_{\mu\nu\lambda}(a) + 2mT_{\mu\nu} + \Delta^{(1)}_{\mu\nu} + \Delta^{(2)}_{\mu\nu}$
 $k_{1}^{\mu}T_{\mu\nu l}(a) = k_{1}^{\mu} (T_{\mu\nu l}(a) - T_{\mu\nu l}(0)) + k_{1}^{\mu}T_{\mu\nu l}(0)$

chose *a* in a way that vector current is conserved and see what comes out for the axial current

Calc (all *i*':

$$\begin{array}{lll} \text{ulate} & \Delta_{\mu\nu\lambda}(a) &=& -\int \frac{d^4p}{(2\pi)^4} \left\{ \text{Tr} \left[\frac{1}{\not p + \not q - m} \gamma_\lambda \gamma_5 \frac{1}{(\not p + \not q - \not q) - m} \gamma_\nu \frac{1}{(\not p + \not q - \not k_1) - m} \gamma_\mu \right] \right. \\ & \left. - \text{Tr} \left[\frac{1}{\not p - m} \gamma_\lambda \gamma_5 \frac{1}{(\not p - \not q) - m} \gamma_\nu \frac{1}{(\not p - \not k_1) - m} \gamma_\mu \right] \right\} \\ & \left. + (\mu \longleftrightarrow \nu, k_1 \leftrightarrow k_2) \,. \end{array}$$

Calc (all i

$$\begin{array}{lll} \text{culate} & \Delta_{\mu\nu\lambda}(a) &=& -\int \frac{d^4p}{(2\pi)^4} \left\{ \text{Tr} \left[\frac{1}{\not p + \not q - m} \gamma_\lambda \gamma_5 \frac{1}{(\not p + \not q - \not q) - m} \gamma_\nu \frac{1}{(\not p + \not q - \not k_1) - m} \gamma_\mu \right] \\ & & -\text{Tr} \left[\frac{1}{\not p - m} \gamma_\lambda \gamma_5 \frac{1}{(\not p - \not q) - m} \gamma_\nu \frac{1}{(\not p - \not k_1) - m} \gamma_\mu \right] \right\} \\ & & + (\mu \longleftrightarrow \nu, k_1 \leftrightarrow k_2) \,. \end{array}$$

Expand in
$$a \quad \Delta_{\mu\nu\lambda}(a) = -\int \frac{d^4p}{(2\pi)^4} a^{\sigma} \frac{\partial}{\partial p^{\sigma}} \operatorname{Tr} \left[\frac{1}{\not p - m} \gamma_{\lambda} \gamma_5 \frac{1}{(\not p - \not q) - m} \gamma_{\nu} \frac{1}{(\not p - \not k_1) - m} \gamma_{\mu} \right] + (\mu \longleftrightarrow \nu, k_1 \leftrightarrow k_2).$$

Expand in
$$a$$
 $\Delta_{\mu\nu\lambda}(a) = -\int \frac{d^4p}{(2\pi)^4} a^{\sigma} \frac{\partial}{\partial p^{\sigma}} \operatorname{Tr} \left[\frac{1}{\not p - m} \gamma_{\lambda} \gamma_5 \frac{1}{(\not p - \not q) - m} \gamma_{\nu} \frac{1}{(\not p - \not k_1) - m} \gamma_{\mu} \right] + (\mu \longleftrightarrow \nu, k_1 \leftrightarrow k_2).$
large p limit $\frac{1}{p^6} \operatorname{Tr} \left[\not p \gamma_{\lambda} \gamma_5 \not p \gamma_{\nu} \not p \gamma_{\mu} \right]$

Cal (all

$$\begin{array}{lcl} \text{culate} & \Delta_{\mu\nu\lambda}(a) &=& -\int \frac{d^4p}{(2\pi)^4} \left\{ \text{Tr} \left[\frac{1}{\not p + \not q - m} \gamma_\lambda \gamma_5 \frac{1}{(\not p + \not q - \not q) - m} \gamma_\nu \frac{1}{(\not p + \not q - \not k_1) - m} \gamma_\mu \right] \\ & \quad - \text{Tr} \left[\frac{1}{\not p - m} \gamma_\lambda \gamma_5 \frac{1}{(\not p - \not q) - m} \gamma_\nu \frac{1}{(\not p - \not k_1) - m} \gamma_\mu \right] \right\} \\ & \quad + (\mu \longleftrightarrow \nu, k_1 \leftrightarrow k_2) \,. \end{array}$$

Expand in
$$a$$
 $\Delta_{\mu\nu\lambda}(a) = -\int \frac{d^4p}{(2\pi)^4} a^{\sigma} \frac{\partial}{\partial p^{\sigma}} \operatorname{Tr} \left[\frac{1}{\not p - m} \gamma_{\lambda} \gamma_5 \frac{1}{(\not p - \not q) - m} \gamma_{\nu} \frac{1}{(\not p - \not k_1) - m} \gamma_{\mu} \right] + (\mu \longleftrightarrow \nu, k_1 \leftrightarrow k_2).$
large p limit $\frac{1}{p^6} \operatorname{Tr} \left[\not p \gamma_{\lambda} \gamma_5 \not p \gamma_{\nu} \not p \gamma_{\mu} \right]$

$$\begin{array}{ll} \text{go to Euclidean} \\ \text{apply Gauss th.} \\ r_0 \to ir_0 \\ d^4r = id^4\vec{r} \end{array} \qquad \Delta_{\mu\nu\lambda}(a) = -\frac{i}{(2\pi)^4} 2\pi^2 a^\sigma \lim_{P \to \infty} P^3 \frac{P_\sigma}{P} \operatorname{Tr} \left[\not\!\!P \gamma_\lambda \gamma_5 \not\!\!P \gamma_\nu \not\!\!P \gamma_\mu \right] \frac{1}{P^6} \\ + (\mu \longleftrightarrow \nu, k_1 \leftrightarrow k_2) \end{array}$$

Ca (all

Expand in
$$a \quad \Delta_{\mu\nu\lambda}(a) = -\int \frac{d^4p}{(2\pi)^4} a^{\sigma} \frac{\partial}{\partial p^{\sigma}} \operatorname{Tr} \left[\frac{1}{\not p - m} \gamma_{\lambda} \gamma_5 \frac{1}{(\not p - \not q) - m} \gamma_{\nu} \frac{1}{(\not p - \not k_1) - m} \gamma_{\mu} \right]$$

 $+ (\mu \longleftrightarrow \nu, k_1 \leftrightarrow k_2).$
large p limit $\frac{1}{p^6} \operatorname{Tr} \left[\not p \gamma_{\lambda} \gamma_5 \not p \gamma_{\nu} \not p \gamma_{\mu} \right]$

go to Euclidean
apply Gauss th.
$$\Delta_{\mu\nu\lambda}(a) = -\frac{i}{(2\pi)^4} 2\pi^2 a^{\sigma} \lim_{P \to \infty} P^3 \frac{P_{\sigma}}{P} \operatorname{Tr} \left[\not\!\!\!P \gamma_{\lambda} \gamma_5 \not\!\!\!P \gamma_{\nu} \not\!\!\!P \gamma_{\mu} \right] \frac{1}{P^6} + (\mu \longleftrightarrow \nu, k_1 \leftrightarrow k_2)$$

calculate Trace

 $\mathrm{Tr}\left[\not\!\!\!P\gamma_{\lambda}\gamma_{5}\not\!\!\!P\gamma_{\nu}\not\!\!\!P\gamma_{\mu}\right] = 4iP^{2}\varepsilon_{\alpha\mu\nu\lambda}P^{\alpha}$

Remember that $\varepsilon_{\alpha\mu\nu\lambda} = -\varepsilon^{\alpha\mu\nu\lambda}$

We arrive at:
$$\Delta_{\mu\nu\lambda}(a) = \frac{1}{(2\pi)^4} 8\pi^2 \varepsilon_{\mu\nu\lambda\alpha} a_{\sigma} \lim_{P \to \infty} \frac{P^{\sigma}P^{\alpha}}{P^2} + (\mu \longleftrightarrow \nu, k_1 \leftrightarrow k_2)$$

We arrive at:
$$\Delta_{\mu\nu\lambda}(\boldsymbol{a}) = \frac{1}{(2\pi)^4} 8\pi^2 \varepsilon_{\mu\nu\lambda\alpha} \, \boldsymbol{a}_{\sigma} \lim_{P \to \infty} \frac{P^{\sigma}P^{\alpha}}{P^2} + (\mu \longleftrightarrow \nu, k_1 \leftrightarrow k_2)$$

take symmetric limit:

 $\lim_{P \to \infty} \frac{P^{\sigma} P^{\alpha}}{P^2} = \frac{1}{4} g^{\sigma \alpha}$

recall: $a = \alpha k_1 + (\alpha - \beta)k_2$

We arrive at:
$$\Delta_{\mu\nu\lambda}(\boldsymbol{a}) = \frac{1}{(2\pi)^4} 8\pi^2 \varepsilon_{\mu\nu\lambda\alpha} \, \boldsymbol{a}_{\sigma} \lim_{P \to \infty} \frac{P^{\sigma}P^{\alpha}}{P^2} + (\mu \longleftrightarrow \nu, k_1 \leftrightarrow k_2)$$

take symmetric limit:
$$\lim_{P \to \infty} \frac{P^{\sigma} P^{\alpha}}{P^2} = \frac{1}{4} g^{\sigma \alpha}$$

recall:
$$a = \alpha k_1 + (\alpha - \beta)k_2$$

Final result:

$$\Delta_{\mu\nu\lambda}(\boldsymbol{a}) = \frac{1}{8\pi^2} \varepsilon_{\alpha\mu\nu\lambda} \boldsymbol{a}^{\boldsymbol{\alpha}} + (\mu \leftrightarrow \nu, k_1 \leftrightarrow k_2)$$

$$= \frac{1}{8\pi^2} \varepsilon_{\alpha\mu\nu\lambda} (\alpha k_1^{\alpha} + (\alpha - \beta) k_2^{\alpha} - \alpha k_2^{\alpha} - (\alpha - \beta) k_1^{\alpha})$$

$$= \frac{\beta}{8\pi^2} \varepsilon_{\alpha\mu\nu\lambda} (k_1 - k_2)^{\alpha}.$$

depends on β , there is an ambiguity, which we have to fix demanding that vector current is conserved.

Recall:

Recall:

$$q^{\lambda}T_{\mu\nu\lambda}(\boldsymbol{a}) = q^{\lambda}\left(T_{\mu\nu\lambda}(\boldsymbol{a}) - T_{\mu\nu\lambda}(0)\right) + q^{\lambda}T_{\mu\nu\lambda}(0)$$
$$= q^{\lambda}\Delta_{\mu\nu\lambda}(\boldsymbol{a}) + 2mT_{\mu\nu} + \Delta^{(1)}_{\mu\nu} + \Delta^{(2)}_{\mu\nu}$$

calculated finite

needs to be computed

Let's calculate

$$\Delta_{\mu\nu}^{(1)} = \int \frac{d^4p}{(2\pi)^4} \operatorname{Tr} \left[\frac{i}{\not p - m} \gamma_5 \gamma_{\nu} \frac{i}{(\not p - \not k_1) - m} \gamma_{\mu} - \frac{i}{(\not p - \not k_2) - m} \gamma_5 \gamma_{\nu} \frac{i}{(\not p - \not q) - m} \gamma_{\mu} \right]$$

Recall:

$$q^{\lambda}T_{\mu\nu\lambda}(\boldsymbol{a}) = q^{\lambda}\left(T_{\mu\nu\lambda}(\boldsymbol{a}) - T_{\mu\nu\lambda}(0)\right) + q^{\lambda}T_{\mu\nu\lambda}(0)$$
$$= q^{\lambda}\Delta_{\mu\nu\lambda}(\boldsymbol{a}) + 2mT_{\mu\nu} + \Delta^{(1)}_{\mu\nu} + \Delta^{(2)}_{\mu\nu}$$

calculated finite

needs to be computed

Let's calculate

$$\begin{split} \Delta^{(1)}_{\mu\nu} &= \int \frac{d^4p}{(2\pi)^4} \operatorname{Tr} \left[\frac{i}{\not p - m} \gamma_5 \gamma_\nu \frac{i}{(\not p - \not k_1) - m} \gamma_\mu - \frac{i}{(\not p - \not k_2) - m} \gamma_5 \gamma_\nu \frac{i}{(\not p - \not q) - m} \gamma_\mu \right] \\ &= \int \frac{d^4p}{(2\pi)^4} \operatorname{Tr} \left[\frac{1}{(\not p - \not k_2) - m} \gamma_5 \gamma_\nu \frac{1}{(\not p - \not k_2 - \not k_1) - m} \gamma_\mu - \frac{1}{\not p - m} \gamma_5 \gamma_\nu \frac{1}{(\not p - \not k_1) - m} \gamma_\mu \right] \end{split}$$

We can use the same trick as previously $p \rightarrow p - k_2$ where $a = -k_2$:

Recall:

$$q^{\lambda}T_{\mu\nu\lambda}(\boldsymbol{a}) = q^{\lambda}\left(T_{\mu\nu\lambda}(\boldsymbol{a}) - T_{\mu\nu\lambda}(0)\right) + q^{\lambda}T_{\mu\nu\lambda}(0)$$
$$= q^{\lambda}\Delta_{\mu\nu\lambda}(\boldsymbol{a}) + 2mT_{\mu\nu} + \Delta^{(1)}_{\mu\nu} + \Delta^{(2)}_{\mu\nu}$$

calculated finite needs to be computed

Let's calculate

$$\begin{split} \Delta^{(1)}_{\mu\nu} &= \int \frac{d^4p}{(2\pi)^4} \operatorname{Tr} \left[\frac{i}{\not p - m} \gamma_5 \gamma_\nu \frac{i}{(\not p - \not k_1) - m} \gamma_\mu - \frac{i}{(\not p - \not k_2) - m} \gamma_5 \gamma_\nu \frac{i}{(\not p - \not q) - m} \gamma_\mu \right] \\ &= \int \frac{d^4p}{(2\pi)^4} \operatorname{Tr} \left[\frac{1}{(\not p - \not k_2) - m} \gamma_5 \gamma_\nu \frac{1}{(\not p - \not k_2 - \not k_1) - m} \gamma_\mu - \frac{1}{\not p - m} \gamma_5 \gamma_\nu \frac{1}{(\not p - \not k_1) - m} \gamma_\mu \right] \end{split}$$

We can use the same trick as previously $p \rightarrow p - k_2$ where $a = -k_2$

We have

$$\begin{split} \Delta^{(1)}_{\mu\nu} &= \frac{1}{(2\pi)^4} 2i\pi^2 k_2^{\rho} k_1^{\sigma} \lim_{P \to \infty} \frac{P_{\rho} P^{\alpha}}{P^2} \operatorname{Tr} \left[\gamma_{\alpha} \gamma_5 \gamma_{\nu} \gamma_{\sigma} \gamma_{\mu} \right] \\ &= \frac{1}{(2\pi)^4} 2i\pi^2 k_2^{\rho} k_1^{\sigma} \frac{1}{4} (-) \underbrace{\operatorname{Tr} \left[\gamma_5 \gamma_{\rho} \gamma_{\nu} \gamma_{\sigma} \gamma_{\mu} \right]}_{4i\varepsilon_{\rho\nu\sigma\mu}} \\ &= -\frac{1}{8\pi^2} \varepsilon_{\mu\nu\sigma\rho} k_1^{\sigma} k_2^{\rho}. \end{split}$$

We obtain $\Delta_{\mu\nu}^{(2)}$ by $\mu \leftrightarrow \nu, k_1 \leftrightarrow k_2$, hence

$$\Delta^{(1)}_{\mu\nu} = \Delta^{(2)}_{\mu\nu}$$

Axial current, final

$$q^{\lambda}T_{\mu\nu\lambda}(\boldsymbol{a}) = q^{\lambda} \left(T_{\mu\nu\lambda}(\boldsymbol{a}) - T_{\mu\nu\lambda}(0)\right) + q^{\lambda}T_{\mu\nu\lambda}(0)$$

$$= 2mT_{\mu\nu} + \Delta^{(1)}_{\mu\nu} + \Delta^{(2)}_{\mu\nu} + q^{\lambda}\Delta_{\mu\nu\lambda}(\boldsymbol{a})$$

$$= 2mT_{\mu\nu} - \frac{1}{4\pi^2} \varepsilon_{\mu\nu\sigma\rho} k_1^{\sigma} k_2^{\rho} + (k_1 + k_2)^{\lambda} \frac{\beta}{8\pi^2} \varepsilon_{\alpha\mu\nu\lambda} (k_1 - k_2)^{\alpha}$$

$$= 2mT_{\mu\nu} - \frac{1-\beta}{4\pi^2} \varepsilon_{\mu\nu\sigma\rho} k_1^{\sigma} k_2^{\rho}$$

We shall use the same trick to calculate the divergence of a vecor current

$$k_1^{\mu} T_{\mu\nu\lambda}(\boldsymbol{a}) = k_1^{\mu} \left(T_{\mu\nu\lambda}(\boldsymbol{a}) - T_{\mu\nu\lambda}(0) \right) + k_1^{\mu} T_{\mu\nu\lambda}(0)$$

$$= k_1^{\mu} T_{\mu\nu\lambda}(0) + k_1^{\mu} \frac{\beta}{8\pi^2} \varepsilon_{\alpha\mu\nu\lambda} \left(k_1 - k_2 \right)^{\alpha}$$

$$= k_1^{\mu} T_{\mu\nu\lambda}(0) + \frac{\beta}{8\pi^2} \varepsilon_{\nu\lambda\sigma\rho} k_1^{\sigma} k_2^{\rho}.$$

We shall use the same trick to calculate the divergence of a vecor current

$$k_1^{\mu} T_{\mu\nu\lambda}(\boldsymbol{a}) = k_1^{\mu} \left(T_{\mu\nu\lambda}(\boldsymbol{a}) - T_{\mu\nu\lambda}(0) \right) + k_1^{\mu} T_{\mu\nu\lambda}(0)$$

$$= k_1^{\mu} T_{\mu\nu\lambda}(0) + k_1^{\mu} \frac{\beta}{8\pi^2} \varepsilon_{\alpha\mu\nu\lambda} \left(k_1 - k_2 \right)^{\alpha}$$

$$= k_1^{\mu} T_{\mu\nu\lambda}(0) + \frac{\beta}{8\pi^2} \varepsilon_{\nu\lambda\sigma\rho} k_1^{\sigma} k_2^{\rho}.$$

$$k_1^{\mu} T_{\mu\nu\lambda} = -\int \frac{d^4 p}{(2\pi)^4} \left\{ \operatorname{Tr} \left[\gamma_{\lambda} \gamma_5 \frac{1}{(\not p - \not q) - m} \gamma_{\nu} \frac{1}{(\not p - \not k_1) - m} \right] - \operatorname{Tr} \left[\gamma_{\lambda} \gamma_5 \frac{1}{(\not p - \not k_2) - m} \gamma_{\nu} \frac{1}{\not p - m} \right] \right\}$$

We shall use the same trick to calculate the divergence of a vecor current

$$k_1^{\mu} T_{\mu\nu\lambda}(\boldsymbol{a}) = k_1^{\mu} \left(T_{\mu\nu\lambda}(\boldsymbol{a}) - T_{\mu\nu\lambda}(0) \right) + k_1^{\mu} T_{\mu\nu\lambda}(0)$$

$$= k_1^{\mu} T_{\mu\nu\lambda}(0) + k_1^{\mu} \frac{\beta}{8\pi^2} \varepsilon_{\alpha\mu\nu\lambda} \left(k_1 - k_2 \right)^{\alpha}$$

$$= k_1^{\mu} T_{\mu\nu\lambda}(0) + \frac{\beta}{8\pi^2} \varepsilon_{\nu\lambda\sigma\rho} k_1^{\sigma} k_2^{\rho}.$$

$$\begin{aligned} k_{1}^{\mu}T_{\mu\nu\lambda} &= -\int \frac{d^{4}p}{(2\pi)^{4}} \\ & \left\{ \mathrm{Tr} \left[\gamma_{\lambda}\gamma_{5} \frac{1}{(\not{p} - \not{q}) - m} \gamma_{\nu} \frac{1}{(\not{p} - \not{k}_{1}) - m} \right] - \mathrm{Tr} \left[\gamma_{\lambda}\gamma_{5} \frac{1}{(\not{p} - \not{k}_{2}) - m} \gamma_{\nu} \frac{1}{\not{p} - m} \right] \right\} \\ & \left\{ \mathrm{Tr} \left[\gamma_{\lambda}\gamma_{5} \frac{1}{(\not{p} - \not{k}_{2} - \not{k}_{1})) - m} \gamma_{\nu} \frac{1}{(\not{p} - \not{k}_{1}) - m} \right] - \mathrm{Tr} \left[\gamma_{\lambda}\gamma_{5} \frac{1}{(\not{p} - \not{k}_{2}) - m} \gamma_{\nu} \frac{1}{\not{p} - m} \right] \right\} \end{aligned}$$

We shall use the same trick to calculate the divergence of a vecor current

$$k_1^{\mu} T_{\mu\nu\lambda}(\boldsymbol{a}) = k_1^{\mu} \left(T_{\mu\nu\lambda}(\boldsymbol{a}) - T_{\mu\nu\lambda}(0) \right) + k_1^{\mu} T_{\mu\nu\lambda}(0)$$

$$= k_1^{\mu} T_{\mu\nu\lambda}(0) + k_1^{\mu} \frac{\beta}{8\pi^2} \varepsilon_{\alpha\mu\nu\lambda} \left(k_1 - k_2 \right)^{\alpha}$$

$$= k_1^{\mu} T_{\mu\nu\lambda}(0) + \frac{\beta}{8\pi^2} \varepsilon_{\nu\lambda\sigma\rho} k_1^{\sigma} k_2^{\rho}.$$

$$k_{1}^{\mu}T_{\mu\nu\lambda} = -\int \frac{d^{4}p}{(2\pi)^{4}} \left\{ \operatorname{Tr} \left[\gamma_{\lambda}\gamma_{5}\frac{1}{(\not p - \not q) - m}\gamma_{\nu}\frac{1}{(\not p - \not k_{1}) - m} \right] - \operatorname{Tr} \left[\gamma_{\lambda}\gamma_{5}\frac{1}{(\not p - \not k_{2}) - m}\gamma_{\nu}\frac{1}{\not p - m} \right] \right\} \left\{ \operatorname{Tr} \left[\gamma_{\lambda}\gamma_{5}\frac{1}{(\not p - \not k_{2} - \not k_{1})) - m}\gamma_{\nu}\frac{1}{(\not p - \not k_{1}) - m} \right] - \operatorname{Tr} \left[\gamma_{\lambda}\gamma_{5}\frac{1}{(\not p - \not k_{2}) - m}\gamma_{\nu}\frac{1}{\not p - m} \right] \right\} \\ k_{1}^{\mu}T_{\mu\nu\lambda} = -\frac{1}{(2\pi)^{4}}2i\pi^{2}(-)k_{1}^{\sigma}\lim_{R \to \infty}\frac{P_{\sigma}}{P^{2}}\operatorname{Tr} \left[\gamma_{\lambda}\gamma_{5}(\not P - \not k_{2})\gamma_{\nu}\not P \right]$$

$$k_{1}^{\mu}T_{\mu\nu\lambda} = -\frac{1}{(2\pi)^{4}}2i\pi^{2}(-)k_{1}^{\sigma}\lim_{R\to\infty}\frac{P_{\sigma}}{P^{2}}\operatorname{Tr}\left[\gamma_{\lambda}\gamma_{5}(\not\!\!P-\not\!\!k_{2})\gamma_{\nu}\not\!\!P\right]$$
$$= -\frac{1}{8\pi^{2}}i\frac{1}{4}\operatorname{Tr}\left[\gamma_{\lambda}\gamma_{5}\gamma_{\rho}\gamma_{\nu}\gamma_{\sigma}\right]k_{1}^{\sigma}k_{2}^{\rho}$$
$$= \frac{1}{8\pi^{2}}\varepsilon_{\nu\lambda\sigma\rho}k_{1}^{\sigma}k_{2}^{\rho}.$$

Recall

$$k_1^{\mu}T_{\mu\nu\lambda}(\boldsymbol{a}) = k_1^{\mu}T_{\mu\nu\lambda}(0) + \frac{\beta}{8\pi^2}\varepsilon_{\nu\lambda\sigma\rho}k_1^{\sigma}k_2^{\rho} = \frac{1+\beta}{8\pi^2}\varepsilon_{\nu\lambda\sigma\rho}k_1^{\sigma}k_2^{\rho}$$

We need to choose $\beta = -1$ to have vector current conserved!

Axial anomaly

Summarizing:

$$q^{\lambda}T_{\mu\nu\lambda}(\boldsymbol{a}) = 2mT_{\mu\nu} - \frac{1-\beta}{4\pi^2}\varepsilon_{\mu\nu\sigma\rho}k_1^{\sigma}k_2^{\rho}$$
$$k_1^{\mu}T_{\mu\nu\lambda}(\boldsymbol{a}) = \frac{1+\beta}{8\pi^2}\varepsilon_{\nu\lambda\sigma\rho}k_1^{\sigma}k_2^{\rho}$$

Choose
$$\beta = -1$$

 $q^{\lambda}T_{\mu\nu\lambda} = 2mT_{\mu\nu} - \frac{1}{2\pi^2}\varepsilon_{\mu\nu\sigma\rho} k_1^{\sigma}k_2^{\rho}$

Axial current is anomalous This can be translated to the configurations space

$$\partial^{\lambda} J_{\lambda}^{5}(x) = \frac{1}{(4\pi)^{2}} \varepsilon_{\mu\nu\sigma\rho} F^{\mu\nu}(x) F^{\sigma\rho}(x) + \mathcal{O}(m)$$

Axial anomaly

Summarizing:

$$q^{\lambda}T_{\mu\nu\lambda}(\boldsymbol{a}) = 2mT_{\mu\nu} - \frac{1-\boldsymbol{\beta}}{4\pi^2}\varepsilon_{\mu\nu\sigma\rho}k_1^{\sigma}k_2^{\rho}$$

$$k_1^{\mu} T_{\mu\nu\lambda}(\boldsymbol{a}) = \frac{1+\boldsymbol{\beta}}{8\pi^2} \varepsilon_{\nu\lambda\sigma\rho} k_1^{\sigma} k_2^{\rho}.$$

Choose $\beta = -1$

$$q^{\lambda}T_{\mu\nu\lambda} = 2mT_{\mu\nu} - \frac{1}{2\pi^2}\varepsilon_{\mu\nu\sigma\rho}\,k_1^{\sigma}k_2^{\rho}$$

- Anomaly is mass independent
- Adler-Bardeen theorem (69): no higher order correctoons
- name: Adler-Bardeen-Jackiw anomaly
- Fujikawa (79) path integral formulation
- In non-Abelian case one can nullify anomaly Tr(...)=0

Axial current is anomalous

This can be translated to the configurations space

$$\partial^{\lambda} J_{\lambda}^{5}(x) = \frac{1}{(4\pi)^{2}} \varepsilon_{\mu\nu\sigma\rho} F^{\mu\nu}(x) F^{\sigma\rho}(x) + \mathcal{O}(m)$$