QCD lecture 3

October 28



Quark self - energy
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We want to keep the same dimensionality of 2 and g in any number of physical dimensions.
We therefore introduce a dimensionfull parameter u to correct for this.

We will extend Dirac algebra by simply using guugﬁt-u —d
It can be shown that we can treat Dirac bispinors as 4-dimensional.

Dimensional regularization preserves gauge invarince, but has problems in theories
with ys. This is not the case of QCD.

In the following we shall keep m = 0.



Integrals
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Integrals
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Quark self -energy
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Quark self -energy
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this defines the MS-bar renormalization scheme
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Full quark propagator
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Renormalization
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Practical renormalization: remove only poles (MS: minimal subtraction)




Multiplicative renormalization

The same effect can be obtained by multiplivation of the “bare”
propagator by the renormalization constant:

7288 = Sp

where
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Multiplicative renormalization

The same effect can be obtained by multiplication of the “bare”
propagator by the renormalization constant:
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Multiplicative renormalization

In QFT propagator is defined as:

Sr(xz —y) = (0 |T(W(z)¥(y))|0)

Therefore multiplicative renormalization can be achieved by multipying
fermion (quark) fields by \/ Za: Analogously we will renormalize gluon
self-energy, and this will lead to the multiplicative renormalization

of the gluon fields.




Multiplicative renormalization

In QFT propagator is defined as:

Sr(xz —y) = (0 |T(W(z)¥(y))|0)

Therefore multiplicative renormalization can be achieved by multipying
fermion (quark) fields by \/ Za: Analogously we will renormalize gluon
self-energy, and this will lead to the multiplicative renormalization

of the gluon fields.

Write the QCD lagrangian in terms of the bare fields in d =4 — 2 dims.
where everything is finite and we have canonical commutation rules.
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Multiplicative renormalization
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Define renormalized fields:
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Note that when € goes to zero bare fields and ren. constants are infinite.

Rewrite Lagrangian in terms of renormalized fields:
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Multiplicative renormalization
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Define renormalized fields:
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Note that when € goes to zero bare fields and ren. constants are infinite.

Rewrite Lagrangian in terms of renormalized fields:
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Renormalized lagrangian

We construct the renormalized lagrangian by adding counterterms

finite, renormalized 4-dim.
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This lagrangian is properly normalized.



Renormalized lagrangian

We construct the renormalized lagrangian by adding counterterms

1

~ QS_

_ rm— N— .
Lr = Yidy+ (Zy — 1) ¢idy
— gutYpT A" — (22 Z39(0) — 9M€> Yy A + ...

N&S

o | -

This lagrangian is properly normalized.

Counterterms remove singularities in loops, which allows to remove
regularization. If we need only a finite number of counterterms to remove
singularities in 1/¢ to all orders of perturbation theory,

then theory is renormalizable. Gauge theories are renormalizable.



Renormalized coupling constant

(ZQ Zgg(o) — g,ue) This equation has solution of the form
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because in the lowest order bare and
renormalized g should be the same in 4 dims.

" | =

N@S



Renormalized coupling constant

(ZQ Zgg(o) — g/f) This equation has solution of the form
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because in the lowest order bare and
renormalized g should be the same in 4 dims.

We need, however more terms:

E +£ﬂ§+ % ; i) +£§%«+%§f






Renormalized coupling constant
<ZQ\/73
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because in the lowest order bare and
renormalized g should be the same in 4 dims.
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Renormalized coupling constant

Full result:
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At this order this is gauge invariant.
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Running coupling constant
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Bare coupling constant should not depend on u. This can be achieved only if:

g = g(p)

Hence we have the following equation:
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Running coupling constant
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First calculate

We have [1° = €XP islnu and SU = €l



Running coupling constant

. (s 110 1 | g
— — ——ne |l —F...
Jdo) = gH i kB A 3 f .

First calculat ' 89(0) ! g(q
IrSt CalCulate — =
0 1In p? ©)

1 1

We have [1° = €XP (5511& /ﬂ) and dld z,zf — 55,u€
1 [

dg(p) _  0g()/0Inp?
d1n p? d9(0)/ 99




Running coupling constant
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Running coupling constant
g* (1) as(p)
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We usually work with Qg ( ,LL)

which gives
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beta function




Running coupling constant
g* (1) as(p)

We usually work with Qg ( ,LL)
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Running coupling constant
g* (1) as(p)
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Running coupling constant
g* (1) as(p)
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QCD beta function




Solving RGE
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SO‘V] ﬂg RG E one loop approximation
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Rewrite last equation in the following form:
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This equation says that both sides are constant as functions of u or u,
This constant is encoded in Aqcp, Which has to be taken from experiment.



Running coupling constant

We can either write the asymptotic solution
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or an equation relating the couplings at two different scales:
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For negative B, there is a problem (in QED: Landau pole).

as(1)

INnQCD  as( — oo0) — 0  Thisis called asymptotic freedom.
This is why we can apply pert. theory even though the coupling is not
a’prori small. This also explains why the parton model works.



Running coupling constant

0.5 — Agril 2004
'|| {;‘;‘“-\____ Theory 3 ; _‘z_’\
'a e - < =
(X.S(Q) . S [ R
\ Deep Inelastic Scattering A
¢ ¢ Annihilation c e
0.4 1\ Hadron Collisions o =
Heavy Quarkonia " ®
\ (= ACL ot (M)
. [245 MeV ---=-0.1209
' D 2
0.3 VD 1210 Mev — 0.1182
O(exe3) 77
180 MeV — —(.1155
-ﬁ
002 B
00' B




Grand Uninified Theory ? (GUT)

Forces Merge at High Energies
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Consequences of running

In a typical QCD calculation we can choose u? at will, and a typical choice
is that u? corresponds to the large momentum transfer present in a given process.
See for example the quark propagator (although it is not an observable):
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Choice:

nullifies large logarithm.

One might be worried that the change of scale changes the numerical value of
the quark propagator in plain contradiction with the RG invariance. One should,
however, keep in mind that RG invariance concerns full theory, and here we

are dealing with one loop approximation only. In two, three etc. loop calculations
sensitivity to the choice of scale is significantly reduced.



Renormalization: summary

Ultraviolet infinities appear in loop diagrams
Regularization, usefull method: dimensional regularization
Renormalization constants: fields, couplings, masses
Relations between renormalization constants
Counterterms (finite # - theory is renormalizable)
Dimensional transmutation: Aqcp

Running couplings and masses

Asymptotic freedom

Scale choice may minimize h.o. correctons

Only full theory is scale invariant

Zo\Zs 73

Zqu ZGG'G




