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Deep Inelastic Scattering
(DIS)

4-momentum	transfer	and	energy	transfer

on	mass-shell	condition	for	scattered	proton	(not	present	in	the	inelastic	case):



Elastic	cross-section:

Recall:
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Inelastic	cross-section:

Two	unknown	functions	describing	the	proton	structure:	W1 and W2
depending	on	two	independent	variables:	 Q2 and ν

Inelastic	case:	
1)	ν not fixed (X not mesured)
2)	proton	is	not	elementary



Bjorken Scaling
Bjorken	limit:

where:



Feynman Parton Model
Inelastic	scattering	on	proton
is	a	sum	of	elastic scattrings	on	partons
that	are	parallel	to	p
and	carry	momentum	fraction	ξ

In	the	proton	rest	frame	we	have	to
assume	that	parton	mass	is

then	the	on-shell	condition	for	
the	struck	parton	reads

ξ is	the	same	as	Bjorken	x !



parton	elastic	cross-section	with	proton	mas	M replaced by ξi M
and proton charge replaced by parton charge ei
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parton	elastic cross-section	with	proton	mas	M replaced by ξi M
and proton charge replaced by parton charge ei

multiply by probabilty of finding parton i in the proton, 
sum over all partons and integrate over dξi  and you get the inelastic cross-section on the proton

expresed in terms of the Bjorken functions W1,2

we can now immediately calculate W1,2 in terms of f(ξ)



Bjorken Scaling vs. 
Parton Model

in	parton	model	structure	fubctions
are	related:	Callan-Gross	relation



Quarks as Partons

assuming	isospin	symmetry:

no	strangness	in	the	nucleon:



Quarks as Partons
proton	and	neutron	charges

imply		constraints	on	the	parton	distributions	(PDF’s):

valence	and	sea	quarks:

total	momenum	– for	typical	parametrizations

there	must	be	other	partons	that	do	not	inteact	electromagnetically:	gluons



Quantum 
Chromo Dynamics

Gauge	theory	based	on	SU(3)	group

covariant	derivative

transforms	as



SU(N) group
in	fundamental	representation	generators	are	given	as	N	x N hermitean	matrices
that	satisfy	commutation	relations

fmnl are	totally	antisymmetric	tensors	known	as	structure	constants.	To	define
the	group	we	either	give	explicit	form	of	the	generators	or	a	complete	set	of
structure	constants.	

Examples:
SU(2)
Pauli	matrices

Normalization:



SU(N) group
in	fundamental	representation	generators	are	given	as	N	x N hermitean	matrices
that	satisfy	commutation	relations

fmnl are	totally	antisymmetric	tensors	known	as	structure	constants.	To	define
the	group	we	either	give	explicit	form	of	the	generators	or	a	complete	set	of
structure	constants.	

Examples:
SU(3)	
Gell-Mann	
matrices



Conjugated 
fundamental rep.

obviously,	there	are	infintely	many	matrix	representations	related	by	the	unitary	transformation

let’s	complex	conjugate	the	commutation	relation

and	multiply	all	generators	by	minus

we	have	constructed	conjugated	representation																											satysfying	commutation	relation

is		this	representation	unitary	equivalent	to	the	fundamental	one?													



Conjugated 
fundamental rep.

obviously,	there	are	infintely	many	matrix	representations	related	by	the	unitary	transformation

let’s	complex	conjugate	the	commutation	relation

and	multiply	all	generators	by	minus

we	have	constructed	conjugated	representation																											satysfying	commutation	relation

is		this	representation	unitary	equivalent	to	the	fundamental	one?				

SU(2)	– yes																																																																						complication
SU(3)	and	higher	– no

therefore	quarks	and	antiquarks	are	different	objects



Adjoint representation
it	follows	from	the	Jacobi	identity

that

this	relation	can	be	writen	in	terms	of	(N2-1)	x (N2-1)		matrices	defined	as

in	the	following	way

which	means	that												are	SU(3)	generators,	they	form	adjoint	representation
note	that

so	adjoint	representation	is	self-conjugated	(real)



Adjoint representation
consider	vector	in	the	adjoint	representation

which	transforms	as

because																																																			and

one	can	write	this	transformation	differently,	defining

then

leads	to



Adjoint representation
consider	vector	in	the	adjoint	representation

which	transforms	as

because																																																			and

one	can	write	this	transformation	differently,	defining

then

leads	to

gauge	fields	transform	according	to	the	adjoint	representation	of	SU(N)



QED vs.QCD
field	tensor	in	QED

can	be	expressed	in	terms	of	covariant	derivatives,	because	the	the	field	is	Abelian:

this	can	be	generalized	to	the	non	Abelian	case	where	the	commutator	does	not	vanish

in	order	to	find	transformaion	law,	we	have	first	to	prove	that

because

we	have

commutator	is	in	principle	an	operator
and	the	field	tensor	is	a	function!



QCD Lagrangian
gauge	boson	part	(yang-Mills)

in	QED		

in	QCD																																																																											2

QCD	lagrangian	contains	interactions!	
gluons	interact	with	themselves,	they	carry
adjoint	color	charge											
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QCD Lagrangian
gauge	boson	part	(yang-Mills)

in	QED		

in	QCD																																																																											2

QCD	lagrangian	contains	interactions!	
gluons	interact	with	themselves,	they	carry
adjoint	color	charge											



Full QCD lagrangian
quarks	interact
via	covariant
derivative

propagators:

gauge	choice!



Full QCD lagrangian
quarks	interact
via	covariant
derivative

propagators:

gauge	choice!



Color factors
each	Feynman	diagram	is	a	product	of	a	momentum-Dirac	structure	(like	in	QED)
and	a	color	factor

to	calculate	color	factors	it	is	very	practical	to	use	the	graphical	notation

fundamental	geneator:

m,n = 1,2,…N2-1,   a,b = 1,2,…N

multiplication:

adjoint	generator:



Color factors
Kroneker	deltas	and	traces:

generators	are	tracless	and	dormalized	to	1/2



Color factors
commutation	relations:

fundamental:

adjoint:



Color factors
Example:	

Casimir	operator	for	the	fundamental	representation

quadratic	Casimir	operator	is	the	sum	over	all	generators	squared
and	it	is	proportional	to	unity	multiplied	by	a	number,	
which	is	simply	called	“Casimir”

In	SU(2)	for	any	representation	of	spin	s it	is	equal	to	
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Color factors
Example:	

Casimir	operator	for	the	fundamental	representation

contract	fermion	line:

use:



Renormalization
In	quantum	field	theory	loop	diagrams	have	infinite	integrals.	We	shall	discuss	this
problem	on	the	example	of		fermion	self-energy	in	Feynman	gauge.

This	integral	is	logarithmically	divergent	for	k infinity
We	hve	to	first	regularize	it,	so	that	we	are	dealing	with	finite	quantities,	and	then
we	shall	remove	regulator.	There	are	many	ways	to	regularize	the	theory,	we	shall
choose	dimensional	regularization
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Dimensional 
regularization

We	want	to	keep	the	same	dimensionality	of	Σ and	g	in	any	number	of	physical	dimensions.
We	therefore	introduce	a	dimensionfull	parameter	μ	to	correct	for	this.	

We	will	extend	Dirac	algebra	by	simply	using																															
It	can	be	shown	that	we	can	treat	Dirac	bispinors	as	4-dimensional.

Dimensional	regularization	preserves	gauge	invarince,	but	has	problems	in	theories
with	γ5.	This	is	not	the	case	of	QCD.

In	the	following	we	shall	keep	m =	0.



Dirac algebra
We	need	to	calculate

with	the	help	of	the	anticommutation	rule:
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Dirac algebra
We	need	to	calculate

with	the	help	of	the	anticommutation	rule:

commute	γν

use



Integrals

Define	two	integrals



Feynman 
decomposition

We	shall	use	Feynman	trick

which	gives:
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Feynman 
decomposition

We	shall	use	Feynman	trick

which	gives:

Shift	integration	variable																																								and	define



Wick rotation
We	will	change	Minkowski	integral	to	Euclidean

We	have	skipped	Feynman	iε prescription,
but	now	we	have	to	recall	where	the	poles	are	

where																														(integration	limits!)



Wick rotation
Therefore	Minkowski	integrals	

transform	into	d dimesional	Euclidean	integrals

where



Integrals in 
d dimensions

Angular	integration	takes	the	following	form



Usefull identities
Euler	Beta	function

Usefull	properties	of	Gamma	functions



Usefull identities
Euler	Beta	function

Usefull	properties	of	Gamma	functions

Infinities	show	up	as	poles	in ε,
we	have	to	remve	poles	before	
we	go	back	to	4	dimensions


