QCD Lecture 2

October 21

Deep Inelastic Scattering (DIS)

4-momentum transfer and energy transfer

$$q^2 = -2\omega\omega'(1-\cos\theta) = -4\omega\omega'\sin^2\frac{\theta}{2}, \quad \nu = \omega - \omega'$$

on mass-shell condition for scattered proton (not present in the inelastic case):

$$\delta((p+q)^2 - M^2) = \delta(2M\nu - Q^2) = \frac{1}{2M}\delta\left(\nu - \frac{Q^2}{2M}\right)$$

Elastic cross-section:

$$\begin{aligned} \frac{d\sigma}{dQ^2} &= \frac{\pi\alpha^2}{4\omega^2 \sin^4 \frac{\theta}{2}} \int \frac{e_p^2}{\omega\omega'} \left\{ \frac{\mathcal{A}}{4} \cos^2 \frac{\theta}{2} - \frac{\mathcal{B}}{2M^2} \sin^2 \frac{\theta}{2} \right\} d\nu \,\delta \left(\nu - \frac{Q^2}{2M}\right) \\ &= \frac{\pi\alpha^2}{4\omega^2 \sin^4 \frac{\theta}{2}} \frac{e_p^2}{\omega\omega'} \left\{ \cos^2 \frac{\theta}{2} + \frac{Q^2}{2M^2} \sin^2 \frac{\theta}{2} \right\}. \end{aligned}$$

Recall:
$$\frac{1}{4} \sum_{\text{pol}} |\mathcal{M}_{fi}|^2 = \frac{e_1^2 e_2^2}{(q^2)^2} L^{\nu\mu}(k, k') L_{\nu\mu}(p, p')$$

$$\mathbf{A}_{\nu\mu}(p,q) = 4\left(p_{\nu} - \frac{p \cdot q}{q^2}q_{\nu}\right)\left(p_{\mu} - \frac{p \cdot q}{q^2}q_{\mu}\right) + q^2\left(g_{\nu\mu} - \frac{q_{\nu}q_{\mu}}{q^2}\right)$$

Elastic cross-section:

$$\frac{d\sigma}{dQ^2} = \frac{\pi\alpha^2}{4\omega^2 \sin^4 \frac{\theta}{2}} \int \frac{e_p^2}{\omega\omega'} \left\{ \frac{\mathcal{A}}{4} \cos^2 \frac{\theta}{2} - \frac{\mathcal{B}}{2M^2} \sin^2 \frac{\theta}{2} \right\} d\nu \,\delta \left(\nu - \frac{Q^2}{2M}\right) \\ = \frac{\pi\alpha^2}{4\omega^2 \sin^4 \frac{\theta}{2}} \frac{e_p^2}{\omega\omega'} \left\{ \cos^2 \frac{\theta}{2} + \frac{Q^2}{2M^2} \sin^2 \frac{\theta}{2} \right\}.$$

Recall:
$$\frac{1}{4} \sum_{\text{pol}} |\mathcal{M}_{fi}|^2 = \frac{e_1^2 e_2^2}{(q^2)^2} L^{\nu\mu}(k, k') L_{\nu\mu}(p, p')$$

$$A_{\nu\mu}(p,q) = 4\left(p_{\nu} - \frac{p \cdot q}{q^2}q_{\nu}\right)\left(p_{\mu} - \frac{p \cdot q}{q^2}q_{\mu}\right) + q^2\left(g_{\nu\mu} - \frac{q_{\nu}q_{\mu}}{q^2}\right)$$

Inelastic case: 1) v not fixed (X not mesured) 2) proton is not elementary $W_{\mu\nu}(p,q) = \underbrace{4W_2}_{A} \left(p_{\mu} - \frac{p \cdot q}{q^2} q_{\mu} \right) \left(p_{\nu} - \frac{p \cdot q}{q^2} q_{\nu} \right)$

$$\frac{p \cdot q}{q^2} q_{\nu} + 4M^2 W_1 \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2} \right)$$

Inelastic cross-section:

$$\frac{d\sigma}{dQ^2d\nu} = \frac{\pi\alpha^2}{4\omega^3\omega'\sin^4\frac{\theta}{2}} \left\{ \frac{\mathcal{A}}{4}\cos^2\frac{\theta}{2} - \frac{\mathcal{B}}{4M^2}2\sin^2\frac{\theta}{2} \right\}$$
$$= \frac{\pi\alpha^2}{4\omega^3\omega'\sin^4\frac{\theta}{2}} \left\{ W_2(Q^2,\nu)\cos^2\frac{\theta}{2} + 2W_1(Q^2,\nu)\sin^2\frac{\theta}{2} \right\}$$

Two unknown functions describing the proton structure: W_1 and W_2 depending on two independent variables: Q^2 and v

Inelastic case: 1) ν not fixed (X not mesured) 2) proton is not elementary $W_{\mu\nu}(p,q) = \underbrace{4W_2}_{A} \left(p_{\mu} - \frac{p \cdot q}{q^2} q_{\mu} \right) \left(p_{\nu} - \frac{p \cdot q}{q^2} q_{\nu} \right) + \underbrace{4M^2 W_1}_{-\mathcal{B}} \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2} \right)$

Bjorken Scaling

Bjorken limit:

$$Q^2, \nu
ightarrow \infty$$

$$Q^2/\nu$$

$$MW_1(Q^2, \nu) = F_1(x)$$

 $\nu W_2(Q^2, \nu) = F_2(x)$

where:

$$x = \frac{Q^2}{2M\nu}$$

Feynman Parton Model

Inelastic scattering on proton is a sum of elastic scattrings on partons that are parallel to pand carry momentum fraction ξ

In the proton rest frame we have to assume that parton mass is

$$m_{\xi} = \xi M$$

then the on-shell condition for the struck parton reads

$$\xi^2 M^2 + 2\xi M\nu - Q^2 = \xi^2 M^2 \to \xi = \frac{Q^2}{2M\nu} = x$$

ξ is the same as Bjorken x !

$$\frac{d\sigma_i}{dQ^2d\nu}\Big|_{\text{parton}} = \frac{\pi\alpha^2 e_i^2}{4\omega^3\omega'\sin^4\frac{\theta}{2}} \left\{\cos^2\frac{\theta}{2} + \frac{Q^2}{4\xi_i^2M^2}2\sin^2\frac{\theta}{2}\right\} \ \delta\left(\nu - \frac{1}{\xi_i}\frac{Q^2}{2M}\right)$$

$$\frac{d\sigma_i}{dQ^2d\nu}\Big|_{\text{parton}} = \frac{\pi\alpha^2 e_i^2}{4\omega^3 \omega' \sin^4 \frac{\theta}{2}} \left\{ \cos^2 \frac{\theta}{2} + \frac{Q^2}{4\xi_i^2 M^2} 2\sin^2 \frac{\theta}{2} \right\} \ \delta\left(\frac{\nu - \frac{1}{\xi_i} \frac{Q^2}{2M}}{2M}\right)$$

multiply by probability of finding parton *i* in the proton, sum over all partons and integrate over $d\xi_i$ and you get the inelastic cross-section on the proton

$$\frac{d\sigma}{dQ^2d\nu} = \sum_{i} \int d\xi_i f_i(\xi_i) \left. \frac{d\sigma_i}{dQ^2d\nu} \right|_{\rm parton}$$

$$\frac{d\sigma_i}{dQ^2d\nu}\Big|_{\text{parton}} = \frac{\pi\alpha^2 e_i^2}{4\omega^3 \omega' \sin^4 \frac{\theta}{2}} \left\{ \cos^2 \frac{\theta}{2} + \frac{Q^2}{4\xi_i^2 M^2} 2\sin^2 \frac{\theta}{2} \right\} \ \delta\left(\frac{\nu - \frac{1}{\xi_i} \frac{Q^2}{2M}}{2M}\right)$$

multiply by probability of finding parton *i* in the proton, sum over all partons and integrate over $d\xi_i$ and you get the inelastic cross-section on the proton expressed in terms of the Bjorken functions $W_{1,2}$

$$\frac{d\sigma}{dQ^2d\nu} = \sum_{i} \int d\xi_i f_i(\xi_i) \left. \frac{d\sigma_i}{dQ^2d\nu} \right|_{\text{parton}} = \frac{\pi\alpha^2}{4\omega^3\omega' \sin^4\frac{\theta}{2}} \left\{ \frac{W_2 \cos^2\frac{\theta}{2} + 2W_1 \sin^2\frac{\theta}{2}}{2} \right\}$$

$$\frac{d\sigma_i}{dQ^2d\nu}\Big|_{\text{parton}} = \frac{\pi\alpha^2 e_i^2}{4\omega^3\omega' \sin^4\frac{\theta}{2}} \left\{ \cos^2\frac{\theta}{2} + \frac{Q^2}{4\xi_i^2 M^2} 2\sin^2\frac{\theta}{2} \right\} \ \delta\left(\frac{\nu - \frac{1}{\xi_i}\frac{Q^2}{2M}}{2M}\right)$$

multiply by probability of finding parton *i* in the proton, sum over all partons and integrate over $d\xi_i$ and you get the inelastic cross-section on the proton expressed in terms of the Bjorken functions $W_{1,2}$

$$\frac{d\sigma}{dQ^2d\nu} = \sum_{i} \int d\xi_i f_i(\xi_i) \left. \frac{d\sigma_i}{dQ^2d\nu} \right|_{\text{parton}} = \frac{\pi\alpha^2}{4\omega^3\omega' \sin^4\frac{\theta}{2}} \left\{ \frac{W_2 \cos^2\frac{\theta}{2} + 2W_1 \sin^2\frac{\theta}{2}}{2} \right\}$$

we can now immediately calculate $W_{1,2}$ in terms of $f(\xi)$

$$W_{2} = \sum_{i} e_{i}^{2} \int d\xi f_{i}(\xi) \delta\left(\nu - \nu \frac{x}{\xi}\right) = \sum_{i} e_{i}^{2} \int d\xi f_{i}(\xi) \frac{\xi^{2}}{\nu x} \delta\left(\xi - x\right) = \frac{1}{\nu} \sum_{i} e_{i}^{2} x f_{i}(x)$$

$$W_1 = \sum_i e_i^2 \int d\xi \ f_i(\xi) \frac{Q^2}{4\xi^2 M^2} \frac{\xi^2}{\nu x} \delta\left(\xi - x\right) = \frac{1}{2M} \sum_i e_i^2 \ f_i(x). \qquad x = \frac{Q^2}{2M\nu}$$

Bjorken Scaling vs. Parton Model

$$F_2(x) = \nu W_2 = x \sum_i e_i^2 f_i(x)$$

$$F_1(x) = MW_1 = \frac{1}{2} \sum_i e_i^2 f_i(x)$$

$$\bigvee$$

 $F_2(x) = 2xF_1(x)$

in parton model structure fubctions are related: Callan-Gross relation

Quarks as Partons

$$F_2^{\mathbf{p}}(x) = \frac{4}{9}x\left[u_{\mathbf{p}}(x) + \overline{u}_{\mathbf{p}}(x)\right] + \frac{1}{9}x\left[d_{\mathbf{p}}(x) + \overline{d}_{\mathbf{p}}(x) + s_{\mathbf{p}}(x) + \overline{s}_{\mathbf{p}}(x)\right]$$

$$F_2^{\mathbf{n}}(x) = \frac{4}{9}x\left[u_{\mathbf{n}}(x) + \overline{u}_{\mathbf{n}}(x)\right] + \frac{1}{9}x\left[d_{\mathbf{n}}(x) + \overline{d}_{\mathbf{n}}(x) + s_{\mathbf{n}}(x) + \overline{s}_{\mathbf{n}}(x)\right]$$

assuming isospin symmetry:

$$u_{\mathbf{p}} = d_{\mathbf{n}} = u, \quad d_{\mathbf{p}} = u_{\mathbf{n}} = d, \quad s_{\mathbf{p}} = s_{\mathbf{n}} = s$$

no strangness in the nucleon:

$$\int dx (s(x) - \overline{s}(x)) = 0$$

Quarks as Partons

proton and neutron charges

imply constraints on the parton distributions (PDF's):

$$\int dx(u(x) - \overline{u}(x)) = 2, \quad \int dx(d(x) - \overline{d}(x)) = 1, \quad \int dx(s(x) - \overline{s}(x)) = 0$$

valence and sea quarks: $u = u_v + q_s$, $d = d_v + q_s$, $\overline{u} = \overline{d} = \overline{s} = s = q_s$

total momenum – for typical parametrizations

$$\int dx \, x(u(x) + \overline{u}(x) + d(x) + \overline{d}(x) + s(x) + \overline{s}(x)) = 1 - \varepsilon \qquad \varepsilon \sim 45\%$$

there must be other partons that do not inteact electromagnetically: gluons

Quantum Chromo Dynamics $\Psi = \begin{bmatrix} \psi_1 \\ \vdots \\ \psi_N \end{bmatrix}$

Gauge theory based on SU(3) group

 $\Psi(x) \to \Psi'(x) = U(x)\Psi(x) \qquad U(x) = e^{-i\theta_m(x)T^m}$

$$(m = 1, 2, \dots N^2 - 1)$$

covariant derivative

$$D_{\mu} = \partial_{\mu} + igT^{m}A^{m}_{\mu}(x) = \partial_{\mu} + igA_{\mu}(x)$$

transforms as

$$D'_{\mu} = U(x)D_{\mu}U^{\dagger}(x) \longrightarrow A'_{\mu}(x) = U(x)A_{\mu}(x)U^{\dagger}(x) - \frac{i}{g}U(x)\partial_{\mu}U^{\dagger}(x)$$

SU(N) group

in fundamental representation generators are given as *N* x *N* hermitean matrices that satisfy commutation relations

$$[T_m, T_n] = i f_{mnl} T_l$$

 f_{mnl} are totally antisymmetric tensors known as structure constants. To define the group we either give explicit form of the generators or a complete set of structure constants.

Examples:
SU(2)
$$T^{i} = \frac{1}{2}\tau^{i}$$

Pauli matrices
 $\tau^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \tau^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \tau^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Normalization:

$$\operatorname{Tr}(T_m T_n) = \frac{1}{2} \delta_{mn}$$

SU(N) group

in fundamental representation generators are given as *N* **x** *N* hermitean matrices that satisfy commutation relations

$$[T_m, T_n] = i f_{mnl} T_l$$

 f_{mnl} are totally antisymmetric tensors known as structure constants. To define the group we either give explicit form of the generators or a complete set of structure constants.

Examples:
SU(3)
Gell-Mann
matrices

$$\lambda^{1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \lambda^{2} = \begin{bmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \lambda^{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

$$T^{i} = \frac{1}{2}\lambda^{m}$$

$$\lambda^{4} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \lambda^{5} = \begin{bmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{bmatrix}, \lambda^{8} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

$$\lambda^{6} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \lambda^{7} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{bmatrix},$$

Conjugated fundamental rep.

obviously, there are infintely many matrix representations related by the unitary transformation

$$T'_n = U^{\dagger} T_n U$$

let's complex conjugate the commutation relation

$$[T_m, T_n] = i f_{mnl} T_l$$

and multiply all generators by minus

$$[-T_m^*, -T_n^*] = if_{mnl}(-T_l^*)$$

we have constructed conjugated representation $T'_n = -T^*_n$ satysfying commutation relation

is this representation unitary equivalent to the fundamental one?

Conjugated fundamental rep.

obviously, there are infintely many matrix representations related by the unitary transformation

$$T'_n = U^{\dagger} T_n U$$

let's complex conjugate the commutation relation

$$[T_m, T_n] = i f_{mnl} T_l$$

and multiply all generators by minus

$$[-T_m^*, -T_n^*] = if_{mnl}(-T_l^*)$$

we have constructed conjugated representation $T'_n = -T^*_n$ satysfying commutation relation

is this representation unitary equivalent to the fundamental one?

SU(2) – yes SU(3) and higher – no complication

$$\tau_i \tau_j = \delta_{ij} + i \varepsilon_{ijk} \tau_k,$$
$$\lambda_a \lambda_b = \frac{2}{3} \delta_{ab} + i f_{abc} \lambda_c + d_{abc} \lambda_c$$

therefore quarks and antiquarks are different objects

Adjoint representation

it follows from the Jacobi identity

$$T_m, [T_n, T_l]] + [T_n, [T_l, T_m]] + [T_l, [T_m, T_n]] = 0$$

that

$$f_{nlk}f_{kmr} + f_{lmk}f_{knr} + f_{mnk}f_{klr} = 0$$

this relation can be writen in terms of (N²-1) x (N²-1) matrices defined as

$$\left(T_l^{\rm adj}\right)_{mn} = -if_{lmn}$$

in the following way

$$[T_m, T_n] = i f_{mnl} T_l$$

which means that T_l^{adj} are SU(3) generators, they form adjoint representation note that

$$-T_l^{\mathrm{adj}\,*} = T_l^{\mathrm{adj}}$$

so adjoint representation is self-conjugated (real)

Adjoint representation

consider vector in the adjoint representation $A = (a^1, \dots, a^{N^2-1})$

which transforms as $A' = U^{adj}A \rightarrow a'^m = a^m - \theta^l f_{lmn}a^n + \dots$

because $U(x) = e^{-i\theta_m(x)T^m}$ and $(T_l^{adj})_{mn} = -if_{lmn}$

one can write this transformation differently, defining

$$\boldsymbol{A} = \sum_{n=1}^{N^2 - 1} a^n T_n$$

then $A' = UAU^{\dagger}$

leads to
$$a'^m T_m = (1 - i \theta^n T_n + ...) a^m T_m (1 + i \theta^n T_n + ...)$$

 $= a^m T_m - i \theta^n [T_n, T_m] a^m$
 $= a^m T_m + \theta^n f_{nmk} T_k a^m$
 $= (a^m - \theta^l f_{lmn} a^n) T_m,$

Adjoint representation

consider vector in the adjoint representation $A = (a^1, \dots, a^{N^2-1})$ which transforms as $A' = U^{adj}A \rightarrow \underline{a'^m} = a^m - \theta^l f_{lmn}a^n + \dots$ because $U(x) = e^{-i\theta_m(x)T^m}$ and $(T_l^{adj})_{mn} = -if_{lmn}$

one can write this transformation differently, defining

$$\boldsymbol{A} = \sum_{n=1}^{N^2 - 1} a^n T_n$$

then $A' = UA U^{\dagger}$

leads to $a'^m T_m = (1 - i \theta^n T_n + ...) a^m T_m (1 + i \theta^n T_n + ...)$ $= a^m T_m - i \theta^n [T_n, T_m] a^m$ $= a^m T_m + \theta^n f_{nmk} T_k a^m$ $= (a^m - \theta^l f_{lmn} a^n) T_m,$

gauge fields transform according to the adjoint representation of SU(N)

QED vs.QCD

field tensor in QED $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$

can be expressed in terms of covariant derivatives, because the the field is Abelian:

$$F^{\mu\nu} = D^{\mu}A^{\nu} - D^{\nu}A^{\mu} = (\partial^{\mu} + iqA^{\mu})A^{\nu} - (\partial^{\nu} + iqA^{\nu})A^{\mu}$$

this can be generalized to the non Abelian case where the commutator does not vanish

$$\boldsymbol{F}_{\mu\nu} = D_{\mu}\boldsymbol{A}_{\nu} - D_{\nu}\boldsymbol{A}_{\mu} = \partial_{\mu}\boldsymbol{A}_{\nu} - \partial_{\nu}\boldsymbol{A}_{\mu} + ig\left[\boldsymbol{A}_{\mu}, \boldsymbol{A}_{\nu}\right]$$

in order to find transformaion law, we have first to prove that

$$\boldsymbol{F}_{\mu\nu} = \frac{1}{ig} [D_{\mu}, D_{\nu}]$$

commutator is in principle an operator and the field tensor is a function!

because

$$D'_{\mu} = U(x)D_{\mu}U^{\dagger}(x)$$

we have

$$F'_{\mu\nu} = U(x)F_{\mu\nu}U^{\dagger}(x)$$

QCD Lagrangian

gauge boson part (yang-Mills)

$$\mathcal{L}_{\rm YM} = -\frac{1}{2} \operatorname{Tr}(\boldsymbol{F}_{\mu\nu} \boldsymbol{F}^{\mu\nu}) = -\frac{1}{4} \sum_{m} F_{\mu\nu}^{m} F^{m\,\mu\nu}$$

in QED $(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})^2$

in QCD $(\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + ig[A_{\mu}, A_{\nu}])^2$

QCD lagrangian contains interactions! gluons interact with themselves, they carry adjoint color charge

QCD Lagrangian

gauge boson part (yang-Mills)

 $\begin{array}{c}a\\\rho\\ \leftarrow\end{array}$

$$\mathcal{L}_{\rm YM} = -\frac{1}{2} \operatorname{Tr}(\boldsymbol{F}_{\mu\nu} \boldsymbol{F}^{\mu\nu}) = -\frac{1}{4} \sum F^m_{\mu\nu} F^{m\,\mu\nu}$$

in QED $(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})^{2}$ in QCD $(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ig[A_{\mu}, A_{\nu}])^{2}$

QCD lagrangian contains interactions! gluons interact with themselves, they carry adjoint color charge

$$-ig_s^2 f^{abe} f^{cde} \left(g_{\rho\nu}g_{\mu\sigma} - g_{\rho\sigma}g_{\mu\nu}\right) -ig_s^2 f^{ace} f^{bde} \left(g_{\rho\mu}g_{\nu\sigma} - g_{\rho\sigma}g_{\mu\nu}\right) -ig_s^2 f^{ade} f^{cbe} \left(g_{\rho\nu}g_{\mu\sigma} - g_{\rho\mu}g_{\sigma\nu}\right)$$

$$-g_s f^{abc} \left[(p-q)_{\nu} g_{\rho\mu} + (q-r)_{\rho} g_{\mu\nu} + (r-p)_{\mu} g_{\nu\rho} \right]$$

QCD Lagrangian

gauge boson part (yang-Mills)

$$\mathcal{L}_{\rm YM} = -\frac{1}{2} \operatorname{Tr}(\boldsymbol{F}_{\mu\nu} \boldsymbol{F}^{\mu\nu}) = -\frac{1}{4} \sum F_{\mu\nu}^m F^{m\,\mu\nu}$$

in QED $(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})^{2}$ in QCD $(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ig[A_{\mu}, A_{\nu}])^{2}$

QCD lagrangian contains interactions! gluons interact with themselves, they carry adjoint color charge

 $\begin{aligned} &-ig_s^2 f^{abe} f^{cde} \left(g_{\rho\nu}g_{\mu\sigma} - g_{\rho\sigma}g_{\mu\nu}\right) \\ &-ig_s^2 f^{ace} f^{bde} \left(g_{\rho\mu}g_{\nu\sigma} - g_{\rho\sigma}g_{\mu\nu}\right) \\ &-ig_s^2 f^{ade} f^{cbe} \left(g_{\rho\nu}g_{\mu\sigma} - g_{\rho\mu}g_{\sigma\nu}\right) \end{aligned}$

$$a \prod_{\rho \neq q} p \int_{0}^{0} p \int_$$

Full QCD lagrangian

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} \left[\boldsymbol{F}_{\mu\nu} \boldsymbol{F}^{\mu\nu} \right] + \sum_{f=1}^{6} \left[\overline{q}_f \, i \gamma^{\mu} D_{\mu} q_f - m_f \overline{q}_f \, q_f \right]$$

quarks interact via covariant derivative

$$ig_s\gamma_\mu T^a_{ji}$$

propagators:

$$iD_F(p)_{\mu\nu} = \frac{-i\,\delta_{ab}}{k^2 + i\epsilon} \left[g_{\mu\nu} - (1-\eta)\frac{k_\mu k_\nu}{k^2}\right]$$

gauge choice!

Full QCD lagrangian

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} \left[\boldsymbol{F}_{\mu\nu} \boldsymbol{F}^{\mu\nu} \right] + \sum_{f=1}^{6} \left[\overline{q}_f \, i \gamma^{\mu} D_{\mu} q_f - m_f \overline{q}_f \, q_f \right]$$

quarks interact via covariant derivative

$$iD_F(p)_{\mu\nu} = \frac{-i \,\delta_{ab}}{k^2 + i\epsilon} \left[g_{\mu\nu} - (1-\eta)\frac{k_\mu k_\nu}{k^2}\right]$$

gauge choice!

each Feynman diagram is a product of a momentum-Dirac structure (like in QED) and a color factor

to calculate color factors it is very practical to use the graphical notation

Kroneker deltas and traces:

generators are tracless and dormalized to 1/2

$$\sim \bigcirc = 0 \quad \underset{m}{\sim} \bigcirc \underset{n}{\sim} \underset{n}{\sim} = \frac{1}{2} \underset{m}{\sim} \underset{n}{\sim} \qquad \operatorname{Tr}(T_m T_n) = \frac{1}{2} \delta_{mn}$$

commutation relations:

 $[T_m, T_n] = i f_{mnl} T_l$

Example:

Casimir operator for the fundamental representation

quadratic Casimir operator is the sum over all generators squared and it is proportional to unity multiplied by a number, which is simply called "Casimir"

$$\sum_{n} (T^n)^2 = C_F \mathbf{1}$$

In SU(2) for any representation of spin *s* it is equal to

$$\sum_n \hat{S}_n^2 = s(s+1) \mathbf{1}$$

Example:

Casimir operator for the fundamental representation

$$\sum_{n} (T^n)^2 = C_F \mathbf{1}$$

Example:

Casimir operator for the fundamental representation

use:

Example:

Casimir operator for the fundamental representation

Example:

Casimir operator for the fundamental representation

Renormalization

In quantum field theory loop diagrams have infinite integrals. We shall discuss this problem on the example of fermion self-energy in Feynman gauge.

$$\Sigma(p) = -g^2 C_F \delta_{\alpha\beta} \int \frac{d^4k}{(2\pi)^4} \frac{\gamma^{\mu} (\not p + \not k + m) \gamma_{\mu}}{[(p+k)^2 - m^2] k^2}$$

This integral is logarithmically divergent for $k \rightarrow$ infinity We hve to first *regularize* it, so that we are dealing with finite quantities, and then we shall remove regulator. There are many ways to regularize the theory, we shall choose dimensional regularization

Renormalization

In quantum field theory loop diagrams have infinite integrals. We shall discuss this problem on the example of fermion self-energy in Feynman gauge.

$$\Sigma(p) = -g^2 C_F \delta_{\alpha\beta} \int \frac{d^4k}{(2\pi)^4} \frac{\gamma^{\mu} (\not p + \not k + m) \gamma_{\mu}}{\left[(p+k)^2 - m^2\right] k^2} \qquad \int \frac{d^4k}{(2\pi)^4} \frac{\not k}{(k^2)^2} = 0$$

This integral is logarithmically divergent for $k \rightarrow$ infinity We hve to first *regularize* it, so that we are dealing with finite quantities, and then we shall remove regulator. There are many ways to regularize the theory, we shall choose dimensional regularization

Renormalization

In quantum field theory loop diagrams have infinite integrals. We shall discuss this problem on the example of fermion self-energy in Feynman gauge.

$$\begin{split} & \frac{-\frac{i}{k^2}g_{\mu\nu}\delta_{ab}}{g_{\mu\nu}\delta_{ab}} = \Sigma(p) \\ & \frac{p}{ig\gamma^{\mu}T_{a\sigma}^{a}} \frac{i\delta_{\sigma\tau}}{p+k-m} \frac{ig\gamma^{\nu}T_{\tau\beta}^{b}}{\int \frac{d^4k}{(2\pi)^4}\frac{1}{(k^2)^2}} \\ & \Sigma(p) = -g^2C_F\delta_{\alpha\beta}\int \frac{d^4k}{(2\pi)^4}\frac{\gamma^{\mu}(\not p+\not k+m)\gamma_{\mu}}{[(p+k)^2-m^2]k^2} = \int \frac{k^3dkd\Omega_4}{(2\pi)^4}\frac{1}{k^4} = \infty \end{split}$$

This integral is logarithmically divergent for $k \rightarrow$ infinity We hve to first *regularize* it, so that we are dealing with finite quantities, and then we shall remove regulator. There are many ways to regularize the theory, we shall choose dimensional regularization

Dimensional regularization

 $4 \to d = 4 - 2\varepsilon$

$$\Sigma(p) = -g^2 \mu^{4-d} C_F \delta_{\alpha\beta} \int \frac{d^d k}{(2\pi)^d} \frac{\gamma^\mu (p + k + m) \gamma_\mu}{[(p+k)^2 - m^2] k^2}$$

We want to keep the same dimensionality of Σ and g in any number of physical dimensions. We therefore introduce a dimensionfull parameter μ to correct for this.

We will extend Dirac algebra by simply using $g_{\mu\nu}g^{\mu\nu} = d$ It can be shown that we can treat Dirac bispinors as 4-dimensional.

Dimensional regularization preserves gauge invarince, but has problems in theories with γ_5 . This is not the case of QCD.

In the following we shall keep m = 0.

We need to calculate

$$\gamma^{\mu}(\not\!\!\!p + k) \gamma_{\mu}$$

with the help of the anticommutation rule: $\{\gamma^{\mu},\gamma^{
u}\}=2g^{\mu
u}$

We need to calculate

$$\gamma^{\mu}(\not\!\!\!p + k) \gamma_{\mu}$$

with the help of the anticommutation rule: $\{\gamma^{\mu},\gamma^{
u}\}=2g^{\mu
u}$

$$\gamma^{\mu}(\not p + k)\gamma_{\mu} = g_{\mu\nu}\gamma^{\mu}\gamma^{\tau}\gamma^{\nu}(p+k)_{\tau}$$

We need to calculate

$$\gamma^{\mu}(\not\!\!\!p + k) \gamma_{\mu}$$

with the help of the anticommutation rule: $\{\gamma^{\mu},\gamma^{\nu}\}=2g^{\mu
u}$

$$\gamma^{\mu}(\not p + \not k)\gamma_{\mu} = g_{\mu\nu}\gamma^{\mu}\gamma^{\tau}\gamma^{\nu}(p+k)_{\tau}$$
$$= g_{\mu\nu}\gamma^{\mu}(2g^{\tau\nu} - \gamma^{\nu}\gamma^{\tau})(p+k)_{\tau}$$

commute γ^{ν}

We need to calculate

use

 $\gamma^{\mu}(p + k) \gamma_{\mu}$

with the help of the anticommutation rule: $\{\gamma^{\mu},\gamma^{\nu}\}=2g^{\mu
u}$

commute
$$\gamma^{\nu}$$

 $\gamma^{\mu}(\not p + \not k)\gamma_{\mu} = g_{\mu\nu}\gamma^{\mu}\gamma^{\tau}\gamma^{\nu}(p+k)_{\tau}$
 $= g_{\mu\nu}\gamma^{\mu}(2g^{\tau\nu} - \gamma^{\nu}\gamma^{\tau})(p+k)_{\tau}$
 $= 2(\not p + \not k) - d(\not p + \not k)$

$$g_{\mu\nu}\gamma^{\mu}\gamma^{\nu} = \frac{1}{2}g_{\mu\nu} \{\gamma^{\mu}, \gamma^{\nu}\} = g_{\mu\nu}g^{\mu\nu} = d$$

We need to calculate

 $\gamma^{\mu}(p + k) \gamma_{\mu}$

with the help of the anticommutation rule: $\{\gamma^{\mu},\gamma^{\nu}\}=2g^{\mu
u}$

$$\begin{array}{rcl} \gamma^{\mu}(\not\!p + \not\!k)\gamma_{\mu} &=& g_{\mu\nu}\gamma^{\mu}\gamma^{\tau}\gamma^{\nu}(p+k)_{\tau} \\ &=& g_{\mu\nu}\gamma^{\mu}\left(2g^{\tau\nu} - \gamma^{\nu}\gamma^{\tau}\right)(p+k)_{\tau} \\ \text{use} &=& 2(\not\!p + \not\!k) - d(\not\!p + \not\!k) \\ &d = 4 - 2\varepsilon &=& -2(1 - \varepsilon)(\not\!p + \not\!k), \end{array}$$

$$\Sigma(p) = 2(1-\varepsilon) g^2 \mu^{2\varepsilon} C_F \delta_{\alpha\beta} \int \frac{d^d k}{(2\pi)^d} \frac{p' + k'}{(p+k)^2 k^2}$$

Integrals

$$\Sigma(p) = 2(1-\varepsilon) g^2 \mu^{2\varepsilon} C_F \delta_{\alpha\beta} \int \frac{d^d k}{(2\pi)^d} \frac{p' + k'}{(p+k)^2 k^2}$$
$$= 2(1-\varepsilon) g^2 \mu^{2\varepsilon} C_F \delta_{\alpha\beta} \left[p' I + \gamma_\mu I^\mu \right].$$

Define two integrals

$$\{I, I^{\mu}\} = \int \frac{d^d k}{(2\pi)^d} \frac{1}{(p+k)^2 k^2} \{1, k^{\mu}\}$$

Feynman decomposition

We shall use Feynman trick

which gives:

$$\frac{1}{(p+k)^2 k^2} = \int_0^1 dx \frac{1}{(k^2 + 2x \, p \cdot k + x \, p^2)^2}$$
$$= \int_0^1 dx \frac{1}{(k^2 + 2x \, p \cdot k + x^2 p^2) + x(1-x) \, p^2)^2}$$

 $\frac{1}{AB} = \int_0^1 dx \frac{1}{[Ax + (1-x)B]^2}$

Shift integration variable $k^{\mu} \rightarrow k^{\mu} + xp^{\mu}$ and define $M^2 = -x(1-x)p^2$

Feynman decomposition

We shall use Feynman trick

which gives:

$$\frac{1}{(p+k)^2 k^2} = \int_0^1 dx \frac{1}{(k^2 + 2x p \cdot k + x p^2)^2}$$
$$= \int_0^1 dx \frac{1}{(k^2 + 2x p \cdot k + x^2 p^2) + x(1-x) p^2)^2}$$

 $\frac{1}{AB} = \int_0^1 dx \frac{1}{[Ax + (1-x)B]^2}$

Shift integration variable $k^{\mu} \rightarrow k^{\mu} + xp^{\mu}$ and define $M^2 = -x(1-x)p^2$

$$\{I, I^{\mu}\} = \int_{0}^{1} dx \int \frac{d^{d}k}{(2\pi)^{d}} \frac{1}{\left(k^{2} - M^{2}\right)^{2}} \{1, k^{\mu} - xp^{\mu}\}$$

Wick rotation

We will change Minkowski integral to Euclidean

We have skipped Feynman *i* ε prescription, but now we have to recall where the poles are

$$\left\{\int_{-\infty}^{\infty} + \int_{C_R} + \int_{+i\infty}^{-i\infty}\right\} dk^0 = 0$$

integral over C_R vanishes

$$\int_{-\infty}^{\infty} dk^0 = -\int_{+i\infty}^{-i\infty} dk^0 = i \int_{-\infty}^{+\infty} dE \quad \text{where} \quad k^0 = iE \quad \text{(integration limits!)}$$

Wick rotation

Therefore Minkowski integrals

$$\{I, I^{\mu}\} = \int_{0}^{1} dx \int \frac{d^{d}k}{(2\pi)^{d}} \frac{1}{(k^{2} - M^{2})^{2}} \{1, k^{\mu} - xp^{\mu}\}$$

transform into *d* dimesional Euclidean integrals

$$\{I, I^{\mu}\} = i \int_{0}^{1} dx \int \frac{d^{d}\vec{k}}{(2\pi)^{d}} \frac{1}{\left(-\vec{k}^{2} - M^{2}\right)^{2}} \{1, k^{\mu} - xp^{\mu}\}$$

where $\vec{k} = (E, k^1, k^2, \dots, k^{d-1})$

Integrals in dimensions

$$k_{d} = k \cos \theta_{d-1},$$

$$k_{d-1} = k \sin \theta_{d-1} \cos \theta_{d-2},$$

$$\dots$$

$$k_{2} = k \sin \theta_{d-1} \sin \theta_{d-2} \dots \cos \theta_{1}$$

$$k_{1} = k \sin \theta_{d-1} \sin \theta_{d-2} \dots \sin \theta_{1}$$

$$\theta_{1} \in (0, 2\pi), \quad \theta_{i>1} \in (0, \pi)$$

Angular integration takes the following form

$$\int d\Omega_d = \int \prod_{i=1}^{d-1} \left(\sin^{i-1} \theta_i d\theta_i \right) = 2 \prod_{i=1}^{d-1} \left(\int_0^{\pi} \sin^{i-1} \theta_i d\theta_i \right)$$

Usefull identities

$$\int_{0}^{\pi} \sin^{n} \theta \, d\theta = B\left(\frac{1+n}{2}, \frac{1}{2}\right)$$

 $\int_{0}^{\infty} dt \, \frac{t^{x-1}}{(1+t)^{x+y}} = B(x,y)$ $\int_{0}^{1} dx \, x^{\alpha-1} (1-x)^{\beta-1} = B(\alpha,\beta)$

Euler Beta function

$$B(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

Usefull properties of Gamma functions

 $z\Gamma(z) = \Gamma(z+1),$ $\Gamma(1/2) = \sqrt{\pi}.$

$$\Gamma(1-\varepsilon) = \exp\left(\gamma\varepsilon + \frac{\pi^2}{12}\varepsilon^2 + \ldots\right)$$

Usefull identities

$$\int_{0}^{\pi} \sin^{n} \theta \, d\theta = B\left(\frac{1+n}{2}, \frac{1}{2}\right)$$

 $\int_{0}^{\infty} dt \, \frac{t^{x-1}}{(1+t)^{x+y}} = B(x,y)$

$$\int_{0} dx \, x^{\alpha - 1} (1 - x)^{\beta - 1} = B(\alpha, \beta)$$

1

Usefull properties of Gamma functions

$$z\Gamma(z) = \Gamma(z+1),$$

$$\Gamma(1/2) = \sqrt{\pi}.$$

$$\Gamma(1-\varepsilon) = \exp\left(\gamma\varepsilon + \frac{\pi^2}{12}\varepsilon^2 + \ldots\right)$$

$$\Gamma(\varepsilon) = \frac{1}{\varepsilon} \Gamma(1 + \varepsilon)$$

Infinities show up as poles in ε ,
we have to remve poles before
we go back to 4 dimensions

Euler Beta function

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$