QCD Lecture 2

October 21

Deep Inelastic Scattering (DIS)

4-momentum transfer and energy transfer

$$
q^{2}=-2 \omega \omega^{\prime}(1-\cos \theta)=-4 \omega \omega^{\prime} \sin ^{2} \frac{\theta}{2}, \quad \nu=\omega-\omega^{\prime}
$$

on mass-shell condition for scattered proton (not present in the inelastic case):

$$
\delta\left((p+q)^{2}-M^{2}\right)=\delta\left(2 M \nu-Q^{2}\right)=\frac{1}{2 M} \delta\left(\nu-\frac{Q^{2}}{2 M}\right)
$$

Elastic cross-section:

$$
\begin{aligned}
\frac{d \sigma}{d Q^{2}} & =\frac{\pi \alpha^{2}}{4 \omega^{2} \sin ^{4} \frac{\theta}{2}} \int \frac{e_{p}^{2}}{\omega \omega^{\prime}}\left\{\frac{\mathcal{A}}{4} \cos ^{2} \frac{\theta}{2}-\frac{\mathcal{B}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right\} d \nu \delta\left(\nu-\frac{Q^{2}}{2 M}\right) \\
& =\frac{\pi \alpha^{2}}{4 \omega^{2} \sin ^{4} \frac{\theta}{2}} \frac{e_{p}^{2}}{\omega \omega^{\prime}}\left\{\cos ^{2} \frac{\theta}{2}+\frac{Q^{2}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right\} .
\end{aligned}
$$

Recall:

$$
\frac{1}{4} \sum_{\text {pol }}\left|\mathcal{M}_{f i}\right|^{2}=\frac{e_{1}^{2} e_{2}^{2}}{\left(q^{2}\right)^{2}} L^{\nu \mu}\left(k, k^{\prime}\right) L_{\nu \mu}\left(p, p^{\prime}\right)
$$

$$
L_{\nu \mu}(p, q)=4\left(p_{\nu}-\frac{p \cdot q}{q^{2}} q_{\nu}\right)\left(p_{\mu}-\frac{p \cdot q}{q^{2}} q_{\mu}\right)+q^{2}\left(g_{\nu \mu}-\frac{q_{\nu} q_{\mu}}{q^{2}}\right)
$$

Elastic cross-section:

$$
\begin{aligned}
\frac{d \sigma}{d Q^{2}} & =\frac{\pi \alpha^{2}}{4 \omega^{2} \sin ^{4} \frac{\theta}{2}} \int \frac{e_{p}^{2}}{\omega \omega^{\prime}}\left\{\frac{\mathcal{A}}{4} \cos ^{2} \frac{\theta}{2}-\frac{\mathcal{B}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right\} d \nu \delta\left(\nu-\frac{Q^{2}}{2 M}\right) \\
& =\frac{\pi \alpha^{2}}{4 \omega^{2} \sin ^{4} \frac{\theta}{2}} \frac{e_{p}^{2}}{\omega \omega^{\prime}}\left\{\cos ^{2} \frac{\theta}{2}+\frac{Q^{2}}{2 M^{2}} \sin ^{2} \frac{\theta}{2}\right\} .
\end{aligned}
$$

Recall:

$$
\frac{1}{4} \sum_{\text {pol }}\left|\mathcal{M}_{f i}\right|^{2}=\frac{e_{1}^{2} e_{2}^{2}}{\left(q^{2}\right)^{2}} L^{\nu \mu}\left(k, k^{\prime}\right) L_{\nu \mu}\left(p, p^{\prime}\right)
$$

$$
L_{\nu \mu}(p, q)=4\left(p_{\nu}-\frac{p \cdot q}{q^{2}} q_{\nu}\right)\left(p_{\mu}-\frac{p \cdot q}{q^{2}} q_{\mu}\right)+q^{2}\left(g_{\nu \mu}-\frac{q_{\nu} q_{\mu}}{q^{2}}\right)
$$

Inelastic case:

1) v not fixed (X not mesured)
2) proton is not elementary

$$
W_{\mu \nu}(p, q)=\underbrace{4 W_{2}}_{\mathcal{A}}\left(p_{\mu}-\frac{p \cdot q}{q^{2}} q_{\mu}\right)\left(p_{\nu}-\frac{p \cdot q}{q^{2}} q_{\nu}\right)+\underbrace{4 M^{2} W_{1}}_{-\mathcal{B}}\left(-g_{\mu \nu}+\frac{q_{\mu} q_{\nu}}{q^{2}}\right)
$$

Inelastic cross-section:

$$
\begin{aligned}
\frac{d \sigma}{d Q^{2} d \nu} & =\frac{\pi \alpha^{2}}{4 \omega^{3} \omega^{\prime} \sin ^{4} \frac{\theta}{2}}\left\{\frac{\mathcal{A}}{4} \cos ^{2} \frac{\theta}{2}-\frac{\mathcal{B}}{4 M^{2}} 2 \sin ^{2} \frac{\theta}{2}\right\} \\
& =\frac{\pi \alpha^{2}}{4 \omega^{3} \omega^{\prime} \sin ^{4} \frac{\theta}{2}}\left\{W_{2}\left(Q^{2}, \nu\right) \cos ^{2} \frac{\theta}{2}+2 W_{1}\left(Q^{2}, \nu\right) \sin ^{2} \frac{\theta}{2}\right\}
\end{aligned}
$$

Two unknown functions describing the proton structure: W_{1} and W_{2} depending on two independent variables: Q^{2} and v

Inelastic case:

1) v not fixed (X not mesured)
2) proton is not elementary

$$
W_{\mu \nu}(p, q)=\underbrace{4 W_{2}}_{\mathcal{A}}\left(p_{\mu}-\frac{p \cdot q}{q^{2}} q_{\mu}\right)\left(p_{\nu}-\frac{p \cdot q}{q^{2}} q_{\nu}\right)+\underbrace{4 M^{2} W_{1}}_{-\mathcal{B}}\left(-g_{\mu \nu}+\frac{q_{\mu} q_{\nu}}{q^{2}}\right)
$$

Bjorken Scaling

Bjorken limit:

$$
\begin{gathered}
Q^{2}, \nu \rightarrow \infty \quad Q^{2} / \nu \\
M W_{1}\left(Q^{2}, \nu\right)=F_{1}(x) \\
\nu W_{2}\left(Q^{2}, \nu\right)=F_{2}(x)
\end{gathered}
$$

where:

$$
x=\frac{Q^{2}}{2 M \nu}
$$

Feynman Parton Model

Inelastic scattering on proton is a sum of elastic scattrings on partons that are parallel to p and carry momentum fraction ξ

In the proton rest frame we have to assume that parton mass is

$$
m_{\xi}=\xi M
$$

then the on-shell condition for the struck parton reads

$$
(\xi p+q)^{2}=m_{\xi}^{2}
$$

$$
\xi^{2} M^{2}+2 \xi M \nu-Q^{2}=\xi^{2} M^{2} \rightarrow \xi=\frac{Q^{2}}{2 M \nu}=x
$$

ξ is the same as Bjorken x !
parton elastic cross-section with proton mas M replaced by $\xi_{i} M$
and proton charge replaced by parton charge e_{i}

$$
\left.\frac{d \sigma_{i}}{d Q^{2} d \nu}\right|_{\text {parton }}=\frac{\pi \alpha^{2} e_{i}^{2}}{4 \omega^{3} \omega^{\prime} \sin ^{4} \frac{\theta}{2}}\left\{\cos ^{2} \frac{\theta}{2}+\frac{Q^{2}}{4 \xi_{i}^{2} M^{2}} 2 \sin ^{2} \frac{\theta}{2}\right\} \delta\left(\nu-\frac{1}{\xi_{i}} \frac{Q^{2}}{2 M}\right)
$$

parton elastic cross-section with proton mas M replaced by $\xi_{i} M$
and proton charge replaced by parton charge e_{i}
$\left.\frac{d \sigma_{i}}{d Q^{2} d \nu}\right|_{\text {parton }}=\frac{\pi \alpha^{2} e_{i}^{2}}{4 \omega^{3} \omega^{\prime} \sin ^{4} \frac{\theta}{2}}\left\{\cos ^{2} \frac{\theta}{2}+\frac{Q^{2}}{4 \xi_{i}^{2} M^{2}} 2 \sin ^{2} \frac{\theta}{2}\right\} \delta\left(\nu-\frac{1}{\xi_{i}} \frac{Q^{2}}{2 M}\right)$
multiply by probabilty of finding parton i in the proton,
sum over all partons and integrate over $d \xi_{i}$ and you get the inelastic cross-section on the proton

$$
\frac{d \sigma}{d Q^{2} d \nu}=\left.\sum_{i} \int d \xi_{i} f_{i}\left(\xi_{i}\right) \frac{d \sigma_{i}}{d Q^{2} d \nu}\right|_{\text {parton }}
$$

parton elastic cross-section with proton mas M replaced by $\xi_{i} M$
and proton charge replaced by parton charge e_{i}
$\left.\frac{d \sigma_{i}}{d Q^{2} d \nu}\right|_{\text {parton }}=\frac{\pi \alpha^{2} e_{i}^{2}}{4 \omega^{3} \omega^{\prime} \sin ^{4} \frac{\theta}{2}}\left\{\cos ^{2} \frac{\theta}{2}+\frac{Q^{2}}{4 \xi_{i}^{2} M^{2}} 2 \sin ^{2} \frac{\theta}{2}\right\} \delta\left(\nu-\frac{1}{\xi_{i}} \frac{Q^{2}}{2 M}\right)$
multiply by probabilty of finding parton i in the proton, sum over all partons and integrate over $d \xi_{i}$ and you get the inelastic cross-section on the proton expresed in terms of the Bjorken functions $W_{1,2}$

$$
\frac{d \sigma}{d Q^{2} d \nu}=\left.\sum_{i} \int d \xi_{i} f_{i}\left(\xi_{i}\right) \frac{d \sigma_{i}}{d Q^{2} d \nu}\right|_{\text {parton }}=\frac{\pi \alpha^{2}}{4 \omega^{3} \omega^{\prime} \sin ^{4} \frac{\theta}{2}}\left\{W_{2} \cos ^{2} \frac{\theta}{2}+2 W_{1} \sin ^{2} \frac{\theta}{2}\right\}
$$

parton elastic cross-section with proton mas M replaced by $\xi_{i} M$ and proton charge replaced by parton charge e_{i}

$$
\left.\frac{d \sigma_{i}}{d Q^{2} d \nu}\right|_{\text {parton }}=\frac{\pi \alpha^{2} e_{i}^{2}}{4 \omega^{3} \omega^{\prime} \sin ^{4} \frac{\theta}{2}}\left\{\cos ^{2} \frac{\theta}{2}+\frac{Q^{2}}{4 \xi_{i}^{2} M^{2}} 2 \sin ^{2} \frac{\theta}{2}\right\} \delta\left(\nu-\frac{1}{\xi_{i}} \frac{Q^{2}}{2 M}\right)
$$

multiply by probabilty of finding parton i in the proton, sum over all partons and integrate over $d \xi_{i}$ and you get the inelastic cross-section on the proton expresed in terms of the Bjorken functions $W_{1,2}$

$$
\frac{d \sigma}{d Q^{2} d \nu}=\left.\sum_{i} \int d \xi_{i} f_{i}\left(\xi_{i}\right) \frac{d \sigma_{i}}{d Q^{2} d \nu}\right|_{\text {parton }}=\frac{\pi \alpha^{2}}{4 \omega^{3} \omega^{\prime} \sin ^{4} \frac{\theta}{2}}\left\{W_{2} \cos ^{2} \frac{\theta}{2}+2 W_{1} \sin ^{2} \frac{\theta}{2}\right\}
$$

we can now immediately calculate $W_{1,2}$ in terms of $f(\xi)$

$$
\begin{aligned}
& W_{2}=\sum_{i} e_{i}^{2} \int d \xi f_{i}(\xi) \delta\left(\nu-\nu \frac{x}{\xi}\right)=\sum_{i} e_{i}^{2} \int d \xi f_{i}(\xi) \frac{\xi^{2}}{\nu x} \delta(\xi-x)=\frac{1}{\nu} \sum_{i} e_{i}^{2} x f_{i}(x) \\
& W_{1}=\sum_{i} e_{i}^{2} \int d \xi f_{i}(\xi) \frac{Q^{2}}{4 \xi^{2} M^{2}} \frac{\xi^{2}}{\nu x} \delta(\xi-x)=\frac{1}{2 M} \sum_{i} e_{i}^{2} f_{i}(x) . \quad x=\frac{Q^{2}}{2 M \nu}
\end{aligned}
$$

Bjorken Scaling vs. Parton Model

$$
\begin{gathered}
F_{2}(x)=\nu W_{2}=x \sum_{i} e_{i}^{2} f_{i}(x) \\
F_{1}(x)=M W_{1}=\frac{1}{2} \sum_{i} e_{i}^{2} f_{i}(x) \\
F_{2}(x)=2 x F_{1}(x)
\end{gathered}
$$

in parton model structure fubctions are related: Callan-Gross relation

Quarks as Partons

$$
\begin{aligned}
& F_{2}^{\mathrm{p}}(x)=\frac{4}{9} x\left[u_{\mathrm{p}}(x)+\bar{u}_{\mathrm{p}}(x)\right]+\frac{1}{9} x\left[d_{\mathrm{p}}(x)+\bar{d}_{\mathrm{p}}(x)+s_{\mathrm{p}}(x)+\bar{s}_{\mathrm{p}}(x)\right] \\
& F_{2}^{\mathrm{n}}(x)=\frac{4}{9} x\left[u_{\mathrm{n}}(x)+\bar{u}_{\mathrm{n}}(x)\right]+\frac{1}{9} x\left[d_{\mathrm{n}}(x)+\bar{d}_{\mathrm{n}}(x)+s_{\mathrm{n}}(x)+\bar{s}_{\mathrm{n}}(x)\right]
\end{aligned}
$$

assuming isospin symmetry:

$$
u_{\mathrm{p}}=d_{\mathrm{n}}=u, \quad d_{\mathrm{p}}=u_{\mathrm{n}}=d, \quad s_{\mathrm{p}}=s_{\mathrm{n}}=s
$$

no strangness in the nucleon:

$$
\int d x(s(x)-\bar{s}(x))=0
$$

Quarks as Partons

proton and neutron charges
$q_{\mathrm{p}}=\int d x\left[\frac{2}{3}(u(x)-\bar{u}(x))-\frac{1}{3}(d(x)-\bar{d}(x))-\frac{1}{3}(s(x)-\bar{s}(x))\right]=1$
$q_{\mathrm{n}}=\int d x\left[\frac{2}{3}(d(x)-\bar{d}(x))-\frac{1}{3}(u(x)-\bar{u}(x))-\frac{1}{3}(s(x)-\bar{s}(x))\right]=0$
imply constraints on the parton distributions (PDF's):
$\int d x(u(x)-\bar{u}(x))=2, \quad \int d x(d(x)-\bar{d}(x))=1, \quad \int d x(s(x)-\bar{s}(x))=0$
valence and sea quarks:

$$
u=u_{v}+q_{s}, \quad d=d_{v}+q_{s}, \quad \bar{u}=\bar{d}=\bar{s}=s=q_{s}
$$

total momenum - for typical parametrizations

$$
\int d x x(u(x)+\bar{u}(x)+d(x)+\bar{d}(x)+s(x)+\bar{s}(x))=1-\varepsilon
$$

there must be other partons that do not inteact electromagnetically: gluons

Quantum

Chromo Dynamics

Gauge theory based on $\operatorname{SU}(3)$ group

$$
\Psi(x) \rightarrow \Psi^{\prime}(x)=U(x) \Psi(x) \quad U(x)=e^{-i \theta_{m}(x) T^{m}} \quad\left(m=1,2, \ldots N^{2}-1\right)
$$

covariant derivative

$$
D_{\mu}=\partial_{\mu}+i g T^{m} A_{\mu}^{m}(x)=\partial_{\mu}+i g \boldsymbol{A}_{\mu}(x)
$$

transforms as

$$
\begin{aligned}
D_{\mu}^{\prime}=U(x) D_{\mu} U^{\dagger}(x) & \longrightarrow \\
& \longrightarrow
\end{aligned} \begin{aligned}
& \boldsymbol{A}_{\mu}^{\prime}(x)=U(x) \boldsymbol{A}_{\mu}(x) U^{\dagger}(x)-\frac{i}{g} U(x) \partial_{\mu} U^{\dagger}(x)
\end{aligned}
$$

SU(N) group

in fundamental representation generators are given as $N \times N$ hermitean matrices that satisfy commutation relations

$$
\left[T_{m}, T_{n}\right]=i f_{m n l} T_{l}
$$

$f_{m n l}$ are totally antisymmetric tensors known as structure constants. To define the group we either give explicit form of the generators or a complete set of structure constants.

Examples:
SU(2)

$$
T^{i}=\frac{1}{2} \tau^{i}
$$

Pauli matrices

$$
\tau^{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \tau^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \tau^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Normalization:

$$
\operatorname{Tr}\left(T_{m} T_{n}\right)=\frac{1}{2} \delta_{m n}
$$

SU(N) group

in fundamental representation generators are given as $N \times N$ hermitean matrices that satisfy commutation relations

$$
\left[T_{m}, T_{n}\right]=i f_{m n l} T_{l}
$$

$f_{m n l}$ are totally antisymmetric tensors known as structure constants. To define the group we either give explicit form of the generators or a complete set of structure constants.

Examples:
SU(3)
Gell-Mann
matrices
$\begin{array}{rlrl}T^{i}=\frac{1}{2} \lambda^{m} & \lambda^{4} & =\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right], \lambda^{5}=\left[\begin{array}{lll}0 & 0 & 0 \\ i & 0 & 0\end{array}\right], \quad \lambda^{8}=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2\end{array}\right] \\ \lambda^{6} & =\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right], \lambda^{7}=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0\end{array}\right],\end{array}$

Conjugated
 fundamental rep.

obviously, there are infintely many matrix representations related by the unitary transformation

$$
T_{n}^{\prime}=U^{\dagger} T_{n} U
$$

let's complex conjugate the commutation relation

$$
\left[T_{m}, T_{n}\right]=i f_{m n l} T_{l}
$$

and multiply all generators by minus

$$
\left[-T_{m}^{*},-T_{n}^{*}\right]=i f_{m n l}\left(-T_{l}^{*}\right)
$$

we have constructed conjugated representation $T_{n}^{\prime}=-T_{n}^{*}$ satysfying commutation relation
is this representation unitary equivalent to the fundamental one?

Conjugated
 fundamental rep.

obviously, there are infintely many matrix representations related by the unitary transformation

$$
T_{n}^{\prime}=U^{\dagger} T_{n} U
$$

let's complex conjugate the commutation relation

$$
\left[T_{m}, T_{n}\right]=i f_{m n l} T_{l}
$$

and multiply all generators by minus

$$
\left[-T_{m}^{*},-T_{n}^{*}\right]=i f_{m n l}\left(-T_{l}^{*}\right)
$$

we have constructed conjugated representation $T_{n}^{\prime}=-T_{n}^{*}$ satysfying commutation relation
is this representation unitary equivalent to the fundamental one?

SU(2) - yes
SU(3) and higher - no
complication

$$
\begin{aligned}
\tau_{i} \tau_{j} & =\delta_{i j}+i \varepsilon_{i j k} \tau_{k} \\
\lambda_{a} \lambda_{b} & =\frac{2}{3} \delta_{a b}+i f_{a b c} \lambda_{c}+d_{a b c} \lambda_{c}
\end{aligned}
$$

therefore quarks and antiquarks are different objects

Adjoint representation

it follows from the Jacobi identity

$$
\left[T_{m},\left[T_{n}, T_{l}\right]\right]+\left[T_{n},\left[T_{l}, T_{m}\right]\right]+\left[T_{l},\left[T_{m}, T_{n}\right]\right]=0
$$

that

$$
f_{n l k} f_{k m r}+f_{l m k} f_{k n r}+f_{m n k} f_{k l r}=0
$$

this relation can be writen in terms of $\left(\mathrm{N}^{2}-1\right) \times\left(\mathrm{N}^{2}-1\right)$ matrices defined as

$$
\left(T_{l}^{\mathrm{adj}}\right)_{m n}=-i f_{l m n}
$$

in the following way

$$
\left[T_{m}, T_{n}\right]=i f_{m n l} T_{l}
$$

which means that $T_{l}^{\text {adj }}$ are SU(3) generators, they form adjoint representation note that

$$
-T_{l}^{\mathrm{adj} *}=T_{l}^{\mathrm{adj}}
$$

so adjoint representation is self-conjugated (real)

Adjoint representation

consider vector in the adjoint representation $\quad A=\left(a^{1}, \ldots, a^{N^{2}-1}\right)$
which transforms as $\quad A^{\prime}=U^{\text {adj }} A \rightarrow a^{\prime m}=a^{m}-\theta^{l} f_{l m n} a^{n}+\ldots$.
because $\quad U(x)=e^{-i \theta_{m}(x) T^{m}}$ and $\quad\left(T_{l}^{\text {adj }}\right)_{m n}=-i f_{l m n}$
one can write this transformation differently, defining $\quad \boldsymbol{A}=\sum_{n=1}^{N^{2}-1} a^{n} T_{n}$
then $\quad \boldsymbol{A}^{\prime}=U \boldsymbol{A} U^{\dagger}$
leads to

$$
\begin{aligned}
a^{\prime m} T_{m} & =\left(1-i \theta^{n} T_{n}+\ldots\right) a^{m} T_{m}\left(1+i \theta^{n} T_{n}+\ldots\right) \\
& =a^{m} T_{m}-i \theta^{n}\left[T_{n}, T_{m}\right] a^{m} \\
& =a^{m} T_{m}+\theta^{n} f_{n m k} T_{k} a^{m} \\
& =\left(a^{m}-\theta^{l} f_{l m n} a^{n}\right) T_{m}
\end{aligned}
$$

Adjoint representation

consider vector in the adjoint representation $\quad A=\left(a^{1}, \ldots, a^{N^{2}-1}\right)$
which transforms as $\quad A^{\prime}=U^{\text {adj }} A \rightarrow \underline{a^{\prime m}=a^{m}-\theta^{l} f_{l m n} a^{n}+\ldots ~}$
because $\quad U(x)=e^{-i \theta_{m}(x) T^{m}}$ and $\quad\left(T_{l}^{\text {adj }}\right)_{m n}=-i f_{l m n}$
one can write this transformation differently, defining $\quad \boldsymbol{A}=\sum_{n=1}^{N^{2}-1} a^{n} T_{n}$
then $\quad \boldsymbol{A}^{\prime}=U \boldsymbol{A} U^{\dagger}$
leads to

$$
\begin{aligned}
a^{\prime m} T_{m} & =\left(1-i \theta^{n} T_{n}+\ldots\right) a^{m} T_{m}\left(1+i \theta^{n} T_{n}+\ldots\right) \\
& =a^{m} T_{m}-i \theta^{n}\left[T_{n}, T_{m}\right] a^{m} \\
& =a^{m} T_{m}+\theta^{n} f_{n m k} T_{k} a^{m} \\
& =\left(a^{m}-\theta^{l} f_{l m n} a^{n}\right) T_{m},
\end{aligned}
$$

gauge fields transform according to the adjoint representation of SU(N)

QED vs.QCD

field tensor in QED

$$
F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}
$$

can be expressed in terms of covariant derivatives, because the the field is Abelian:

$$
F^{\mu \nu}=D^{\mu} A^{\nu}-D^{\nu} A^{\mu}=\left(\partial^{\mu}+i q \underline{A^{\mu}}\right) A^{\nu}-\left(\partial^{\nu}+i q \underline{A^{\nu}}\right) A^{\mu}
$$

this can be generalized to the non Abelian case where the commutator does not vanish

$$
\boldsymbol{F}_{\mu \nu}=D_{\mu} \boldsymbol{A}_{\nu}-D_{\nu} \boldsymbol{A}_{\mu}=\partial_{\mu} \boldsymbol{A}_{\nu}-\partial_{\nu} \boldsymbol{A}_{\mu}+i g\left[\boldsymbol{A}_{\mu}, \boldsymbol{A}_{\nu}\right]
$$

in order to find transformaion law, we have first to prove that

$$
\boldsymbol{F}_{\mu \nu}=\frac{1}{i g}\left[D_{\mu}, D_{\nu}\right]
$$

commutator is in principle an operator and the field tensor is a function!
because

$$
D_{\mu}^{\prime}=U(x) D_{\mu} U^{\dagger}(x)
$$

we have

$$
\boldsymbol{F}_{\mu \nu}^{\prime}=U(x) \boldsymbol{F}_{\mu \nu} U^{\dagger}(x)
$$

QCD Lagrangian

gauge boson part (yang-Mills)

$$
\mathcal{L}_{\mathrm{YM}}=-\frac{1}{2} \operatorname{Tr}\left(\boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu}\right)=-\frac{1}{4} \sum_{m} F_{\mu \nu}^{m} F^{m \mu \nu}
$$

in QED

$$
\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)^{2}
$$

in QCD

$$
\left(\partial_{\mu} \boldsymbol{A}_{\nu}-\partial_{\nu} \boldsymbol{A}_{\mu}+i g\left[\boldsymbol{A}_{\mu}, \boldsymbol{A}_{\nu}\right]\right)^{2}
$$

QCD lagrangian contains interactions! gluons interact with themselves, they carry adjoint color charge

QCD Lagrangian

gauge boson part (yang-Mills)

$$
\mathcal{L}_{\mathrm{YM}}=-\frac{1}{2} \operatorname{Tr}\left(\boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu}\right)=-\frac{1}{4} \sum F_{\mu \nu}^{m} F^{m \mu \nu}
$$

in QED

$$
\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)^{2}
$$

in QCD

$$
\left(\partial_{\mu} \boldsymbol{A}_{\nu}-\partial_{\nu} \boldsymbol{A}_{\mu}+i g\left[\boldsymbol{A}_{\mu}, \boldsymbol{A}_{\nu}\right]\right)^{2}
$$

QCD lagrangian contains interactions!

gluons interact with themselves, they carry adjoint color charge

$$
\begin{aligned}
& -i g_{s}^{2} f^{a b e} f^{c d e}\left(g_{\rho \nu} g_{\mu \sigma}-g_{\rho \sigma} g_{\mu \nu}\right) \\
& -i g_{s}^{2} f^{a c e} f^{b d e}\left(g_{\rho \mu} g_{\nu \sigma}-g_{\rho \sigma} g_{\mu \nu}\right) \\
& -i g_{s}^{2} f^{a d e} f^{c b e}\left(g_{\rho \nu} g_{\mu \sigma}-g_{\rho \mu} g_{\sigma \nu}\right)
\end{aligned}
$$

QCD Lagrangian

gauge boson part (yang-Mills)

$$
\mathcal{L}_{\mathrm{YM}}=-\frac{1}{2} \operatorname{Tr}\left(\boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu}\right)=-\frac{1}{4} \sum F_{\mu \nu}^{m} F^{m \mu \nu}
$$

in QED

$$
\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)^{2}
$$

in QCD

$$
\left(\partial_{\mu} \boldsymbol{A}_{\nu}-\partial_{\nu} \boldsymbol{A}_{\mu}+i g\left[\boldsymbol{A}_{\mu}, \boldsymbol{A}_{\nu}\right]\right)^{2}
$$

QCD lagrangian contains interactions!

gluons interact with themselves, they carry adjoint color charge

$$
\begin{aligned}
& -i g_{s}^{2} f^{a b e} f^{c d e}\left(g_{\rho \nu} g_{\mu \sigma}-g_{\rho \sigma} g_{\mu \nu}\right) \\
& -i g_{s}^{2} f^{a c e} f^{b d e}\left(g_{\rho \mu} g_{\nu \sigma}-g_{\rho \sigma} g_{\mu \nu}\right) \\
& -i g_{s}^{2} f^{a d e} f^{c b e}\left(g_{\rho \nu} g_{\mu \sigma}-g_{\rho \mu} g_{\sigma \nu}\right)
\end{aligned}
$$

Full QCD lagrangian

$$
\mathcal{L}=-\frac{1}{2} \operatorname{Tr}\left[\boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu}\right]+\sum_{f=1}^{6}\left[\bar{q}_{f} i \gamma^{\mu} D_{\mu} q_{f}-m_{f} \bar{q}_{f} q_{f}\right]
$$

quarks interact via covariant derivative

propagators:

$$
i S_{F}(p)=\cdot i \delta_{i j} \frac{(k k+m)}{k^{2}-m^{2}+i \epsilon}
$$

onns
gauge choice!

$$
i D_{F}(p)_{\mu \nu}=\frac{-i \delta_{a b}}{k^{2}+i \epsilon}\left[g_{\mu \nu}-(1-\eta) \frac{k_{\mu} k_{\nu}}{k^{2}}\right]
$$

Full QCD lagrangian

$$
\mathcal{L}=-\frac{1}{2} \operatorname{Tr}\left[\boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu}\right]+\sum_{f=1}^{6}\left[\bar{q}_{f} i \gamma^{\mu} D_{\mu} q_{f}-m_{f} \bar{q}_{f} q_{f}\right]
$$

quarks interact via covariant derivative

propagators:

$$
i S_{F}(p)=\cdot i \delta_{i j} \frac{(k k+m)}{k^{2}-m^{2}+i \epsilon}
$$

onns
gauge choice!

$$
i D_{F}(p)_{\mu \nu}=\frac{-i \delta_{a b}}{k^{2}+i \epsilon}\left[g_{\mu \nu}-(1-\eta) \frac{k_{\mu} k_{\nu}}{k^{2}}\right]
$$

Color factors

each Feynman diagram is a product of a momentum-Dirac structure (like in QED) and a color factor
to calculate color factors it is very practical to use the graphical notation
fundamental geneator:
$m, n=1,2, \ldots N^{2}-1, a, b=1,2, \ldots N$
multiplication:

adjoint generator:

$$
a-\sum_{\substack{m \\ m}}^{\substack{m \\ a b}}
$$

Color factors

Kroneker deltas and traces:

$$
\begin{aligned}
& a \underset{=\delta_{a b}}{a} \quad \underbrace{\sim}=N \\
& =\delta_{m n}^{\sim \sim n} \\
& \{\sim \sim
\end{aligned}
$$

generators are tracless and dormalized to $1 / 2$

Color factors

commutation relations: $\quad\left[T_{m}, T_{n}\right]=i f_{m n l} T_{l}$
fundamental:

adjoint:

Color factors

Example:
Casimir operator for the fundamental representation
quadratic Casimir operator is the sum over all generators squared and it is proportional to unity multiplied by a number, which is simply called "Casimir"

$$
\sum_{n}\left(T^{n}\right)^{2}=C_{F} \mathbf{1}
$$

In $\operatorname{SU}(2)$ for any representation of $\operatorname{spin} s$ it is equal to

$$
\sum_{n} \hat{S}_{n}^{2}=s(s+1) \mathbf{1}
$$

Color factors

Example:
Casimir operator for the fundamental representation

$$
\sum_{n}\left(T^{n}\right)^{2}=C_{F} \mathbf{1}
$$

Color factors

Example:
Casimir operator for the fundamental representation
$\sum_{n}\left(T^{n}\right)^{2}=C_{F} \mathbf{1}$

$$
\Sigma_{n}\left(T^{n}\right)^{2}=\frac{\Xi^{20 e r e s e} \xi}{\leftarrow}=C_{F} \longleftarrow
$$

contract fermion line:
use:

凪

Color factors

Example:
Casimir operator for the fundamental representation
$\sum_{n}\left(T^{n}\right)^{2}=C_{F} \mathbf{1}$

$$
\Sigma_{n}\left(T^{n}\right)^{2}=\frac{\text { In }^{202 e r e s} \xi}{\leftarrow}=C_{F} \longleftarrow
$$

contract fermion line:
use:

$$
\begin{aligned}
& \sim \sim n=\frac{1}{2} m_{m} \sim_{n} \\
& =N=N^{2}-1
\end{aligned}
$$

Color factors

Example:
Casimir operator for the fundamental representation
$\sum_{n}\left(T^{n}\right)^{2}=C_{F} \mathbf{1}$

$$
\Sigma_{n}\left(T^{n}\right)^{2}=\frac{\text { Z }^{20 e r e b} \xi}{\longleftarrow}=C_{F} \longleftarrow
$$

contract fermion line:
use:
m

$$
C_{F}=\frac{N^{2}-1}{2 N}= \begin{cases}\frac{3}{4} & \mathrm{SU}(2) \\ \frac{4}{3} & \mathrm{SU}(3)\end{cases}
$$

Renormalization

In quantum field theory loop diagrams have infinite integrals. We shall discuss this problem on the example of fermion self-energy in Feynman gauge.

$$
\begin{aligned}
& \Sigma(p)=-g^{2} C_{F} \delta_{\alpha \beta} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\gamma^{\mu}(\not p+\not k+m) \gamma_{\mu}}{\left[(p+k)^{2}-m^{2}\right] k^{2}}
\end{aligned}
$$

This integral is logarithmically divergent for $k \longrightarrow$ infinity
We hve to first regularize it, so that we are dealing with finite quantities, and then we shall remove regulator. There are many ways to regularize the theory, we shall choose dimensional regularization

Renormalization

In quantum field theory loop diagrams have infinite integrals. We shall discuss this problem on the example of fermion self-energy in Feynman gauge.

$$
\begin{gathered}
-\frac{i}{k^{2}} g_{\mu \nu} \delta_{a b} \\
\frac{p \mathscr{I}^{2}}{i g \gamma^{\mu} T_{\alpha \sigma}^{a} \stackrel{i \delta_{\sigma \tau}}{p+l k-m}} i g \gamma^{\nu} T_{\tau \beta}^{b} \\
\Sigma(p)=-g^{2} C_{F} \delta_{\alpha \beta} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\gamma^{\mu}(\not p+\not p+m) \gamma_{\mu}}{\left[(p+k)^{2}-m^{2}\right] k^{2}} \quad \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\not k}{\left(k^{2}\right)^{2}}=0
\end{gathered}
$$

This integral is logarithmically divergent for $k \longrightarrow$ infinity
We hve to first regularize it, so that we are dealing with finite quantities, and then we shall remove regulator. There are many ways to regularize the theory, we shall choose dimensional regularization

Renormalization

In quantum field theory loop diagrams have infinite integrals. We shall discuss this problem on the example of fermion self-energy in Feynman gauge.

$$
\begin{gathered}
-\frac{i}{k^{2}} g_{\mu \nu} \delta_{a b} \\
\frac{p}{i g \gamma^{\mu} T_{\alpha \sigma}^{a} \frac{i \delta_{\sigma \tau}}{p+k c-m}} i g \gamma^{v} T_{\tau \beta}^{b}
\end{gathered}=\Sigma(p) .
$$

This integral is logarithmically divergent for $k \longrightarrow$ infinity
We hve to first regularize it, so that we are dealing with finite quantities, and then we shall remove regulator. There are many ways to regularize the theory, we shall choose dimensional regularization

Dimensional

regularization

$$
4 \rightarrow d=4-2 \varepsilon
$$

$$
\Sigma(p)=-g^{2} \mu^{4-d} C_{F} \delta_{\alpha \beta} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\gamma^{\mu}(p+\not p+\nmid+m) \gamma_{\mu}}{\left[(p+k)^{2}-m^{2}\right] k^{2}}
$$

We want to keep the same dimensionality of Σ and g in any number of physical dimensions. We therefore introduce a dimensionfull parameter μ to correct for this.

We will extend Dirac algebra by simply using $\quad g_{\mu \nu} g^{\mu \nu}=d$ It can be shown that we can treat Dirac bispinors as 4-dimensional.

Dimensional regularization preserves gauge invarince, but has problems in theories with γ_{5}. This is not the case of QCD.

In the following we shall keep $m=0$.

Dirac algebra

We need to calculate

$$
\gamma^{\mu}(p p+k p) \gamma_{\mu}
$$

with the help of the anticommutation rule: $\quad\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$

Dirac algebra

We need to calculate

$$
\gamma^{\mu}(p p+k p) \gamma_{\mu}
$$

with the help of the anticommutation rule: $\quad\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$

$$
\gamma^{\mu}(p p+k p) \gamma_{\mu}=g_{\mu \nu} \gamma^{\mu} \gamma^{\tau} \gamma^{\nu}(p+k)_{\tau}
$$

Dirac algebra

We need to calculate

$$
\gamma^{\mu}(p p+k p) \gamma_{\mu}
$$

with the help of the anticommutation rule: $\quad\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$

$$
\begin{aligned}
\text { commute } \gamma^{\nu} & \gamma^{\mu}(\not p+k \rho) \gamma_{\mu}
\end{aligned}=g_{\mu \nu} \gamma^{\mu} \gamma^{\tau} \gamma^{\nu}(p+k)_{\tau}, ~(p+k)_{\tau}
$$

Dirac algebra

We need to calculate

$$
\gamma^{\mu}\left(p p^{\prime}+k p\right) \gamma_{\mu}
$$

with the help of the anticommutation rule: $\quad\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$

$$
\left.\begin{array}{ll}
\text { commute } \gamma^{\nu} & \quad \gamma^{\mu}(p p+\not k) \gamma_{\mu}
\end{array}=g_{\mu \nu} \gamma^{\mu} \gamma^{\tau} \gamma^{\nu}(p+k)_{\tau}, ~(p+k)_{\tau}\right)
$$

$g_{\mu \nu} \gamma^{\mu} \gamma^{\nu}=\frac{1}{2} g_{\mu \nu}\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=g_{\mu \nu} g^{\mu \nu}=d$

Dirac algebra

We need to calculate

$$
\gamma^{\mu}\left(p p^{\prime}+k p\right) \gamma_{\mu}
$$

with the help of the anticommutation rule: $\quad\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$
commute γ^{ν}

$$
\gamma^{\mu}(p p+k p) \gamma_{\mu}=g_{\mu \nu} \gamma^{\mu} \gamma^{\tau} \gamma^{\nu}(p+k)_{\tau}
$$

use

$$
\begin{aligned}
& =g_{\mu \nu} \gamma^{\mu}\left(2 g^{\tau \nu}-\gamma^{\nu} \gamma^{\tau}\right)(p+k)_{\tau} \\
& =2(p p+\not k p)-d(p p+k p)
\end{aligned}
$$

$$
d=4-2 \varepsilon \quad=-2(1-\varepsilon)(p)+k p)
$$

$$
\Sigma(p)=2(1-\varepsilon) g^{2} \mu^{2 \varepsilon} C_{F} \delta_{\alpha \beta} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{p p+\not k}{(p+k)^{2} k^{2}}
$$

Integrals

$$
\begin{aligned}
\Sigma(p) & =2(1-\varepsilon) g^{2} \mu^{2 \varepsilon} C_{F} \delta_{\alpha \beta} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{p p+\not k}{(p+k)^{2} k^{2}} \\
& =2(1-\varepsilon) g^{2} \mu^{2 \varepsilon} C_{F} \delta_{\alpha \beta}\left[p{ }^{2} I+\gamma_{\mu} I^{\mu}\right] .
\end{aligned}
$$

Define two integrals

$$
\left\{I, I^{\mu}\right\}=\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{(p+k)^{2} k^{2}}\left\{1, k^{\mu}\right\}
$$

Feynman
 decomposition

We shall use Feynman trick $\quad \frac{1}{A B}=\int_{0}^{1} d x \frac{1}{[A x+(1-x) B]^{2}}$
which gives:

$$
\begin{aligned}
\frac{1}{(p+k)^{2} k^{2}} & =\int_{0}^{1} d x \frac{1}{\left(k^{2}+2 x p \cdot k+x p^{2}\right)^{2}} \\
& =\int_{0}^{1} d x \frac{1}{\left(\left(k^{2}+2 x p \cdot k+x^{2} p^{2}\right)+x(1-x) p^{2}\right)^{2}}
\end{aligned}
$$

Shift integration variable $k^{\mu} \rightarrow k^{\mu}+x p^{\mu}$ and define $\quad M^{2}=-x(1-x) p^{2}$

Feynman
 decomposition

We shall use Feynman trick $\quad \frac{1}{A B}=\int_{0}^{1} d x \frac{1}{[A x+(1-x) B]^{2}}$
which gives:

$$
\begin{aligned}
\frac{1}{(p+k)^{2} k^{2}} & =\int_{0}^{1} d x \frac{1}{\left(k^{2}+2 x p \cdot k+x p^{2}\right)^{2}} \\
& =\int_{0}^{1} d x \frac{1}{\left(\left(k^{2}+2 x p \cdot k+x^{2} p^{2}\right)+x(1-x) p^{2}\right)^{2}}
\end{aligned}
$$

Shift integration variable $k^{\mu} \rightarrow k^{\mu}+x p^{\mu}$ and define $\quad M^{2}=-x(1-x) p^{2}$

$$
\left\{I, I^{\mu}\right\}=\int_{0}^{1} d x \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{\left(k^{2}-M^{2}\right)^{2}}\left\{1, k^{\mu}-x p^{\mu}\right\}
$$

We will change Minkowski integral to Euclidean
We have skipped Feynman is prescription, but now we have to recall where the poles are

$$
\left\{\int_{-\infty}^{\infty}+\int_{C_{R}}+\int_{+i \infty}^{-i \infty}\right\} d k^{0}=0
$$

integral over C_{R} vanishes

$$
\int_{-\infty}^{\infty} d k^{0}=-\int_{+i \infty}^{-i \infty} d k^{0}=i \int_{-\infty}^{+\infty} d E \quad \text { where } \quad k^{0}=i E \quad \text { (integration limits!) }
$$

Wick rotation

Therefore Minkowski integrals

$$
\left\{I, I^{\mu}\right\}=\int_{0}^{1} d x \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{\left(k^{2}-M^{2}\right)^{2}}\left\{1, k^{\mu}-x p^{\mu}\right\}
$$

transform into d dimesional Euclidean integrals

$$
\left\{I, I^{\mu}\right\}=i \int_{0}^{1} d x \int \frac{d^{d} \vec{k}}{(2 \pi)^{d}} \frac{1}{\left(-\vec{k}^{2}-M^{2}\right)^{2}}\left\{1, k^{\mu}-x p^{\mu}\right\}
$$

where $\quad \vec{k}=\left(E, k^{1}, k^{2}, \ldots, k^{d-1}\right)$

Integrals in d dimensions

$$
\begin{aligned}
& k_{d}= k \cos \theta_{d-1}, \\
& k_{d-1}= k \sin \theta_{d-1} \cos \theta_{d-2}, \\
& \ldots \\
& k_{2}= k \sin \theta_{d-1} \sin \theta_{d-2} \ldots \cos \theta_{1} \\
& k_{1}= k \sin \theta_{d-1} \sin \theta_{d-2} \ldots \sin \theta_{1} \\
& \theta_{1} \in(0,2 \pi), \quad \theta_{i>1} \in(0, \pi)
\end{aligned}
$$

Angular integration takes the following form

$$
\int d \Omega_{d}=\int \prod_{i=1}^{d-1}\left(\sin ^{i-1} \theta_{i} d \theta_{i}\right)=2 \prod_{i=1}^{d-1}\left(\int_{0}^{\pi} \sin ^{i-1} \theta_{i} d \theta_{i}\right)
$$

Usefull identities

$$
\begin{array}{cc}
\int_{0}^{\pi} \sin ^{n} \theta d \theta=B\left(\frac{1+n}{2}, \frac{1}{2}\right) & \text { Euler Beta function } \\
\int_{0}^{\infty} d t \frac{t^{x-1}}{(1+t)^{x+y}}=B(x, y) & B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} \\
\int_{0}^{1} d x x^{\alpha-1}(1-x)^{\beta-1}=B(\alpha, \beta) & \left.\begin{array}{r}
z \Gamma(z) \\
\Gamma(1 / 2)
\end{array}\right)=\Gamma(z+1), \\
\text { Usefull properties of Gamma functions } \\
\Gamma(1-\varepsilon)=\exp \left(\gamma \varepsilon+\frac{\pi^{2}}{12} \varepsilon^{2}+\ldots\right) &
\end{array}
$$

Usefull identities

$$
\begin{aligned}
\int_{0}^{\pi} \sin ^{n} \theta d \theta & =B\left(\frac{1+n}{2}, \frac{1}{2}\right) \\
\int_{0}^{\infty} d t \frac{t^{x-1}}{(1+t)^{x+y}} & =B(x, y) \\
\int_{0}^{1} d x x^{\alpha-1}(1-x)^{\beta-1} & =B(\alpha, \beta)
\end{aligned}
$$

Euler Beta function

Usefull properties of Gamma functions

$$
\begin{aligned}
z \Gamma(z) & =\Gamma(z+1) \\
\Gamma(1 / 2) & =\sqrt{\pi}
\end{aligned}
$$

$$
\Gamma(1-\varepsilon)=\exp \left(\gamma \varepsilon+\frac{\pi^{2}}{12} \varepsilon^{2}+\ldots\right)
$$

$$
B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}
$$

