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1 Heavy quark lagrangian

We decompose the heavy quark field that enters the lagrangian for a heavy quark

LQ = Q̄(x)
(
i /D −MQ

)
Q(x) (1)

(where Dµ = ∂µ − igAµ is covariant QCD derivative) in the following way

Q(x) = e−iMQv·x [Qv(x) +Bv(x)]

where

1 + /v

2
Qv(x) = Qv(x),

1− /v
2

Bv(x) = Bv(x),

1− /v
2

Qv(x) = 0,
1 + /v

2
Bv(x) = 0. (2)

The second line of course follows from the first line due to the properties of the projection
operators. Alternatively the same equations can written as

/vQv(x) = Qv(x), /vBv(x) = −Bv(x). (3)

It is convenient to decompose the covariant derivative into two parts

i /D = /v iv ·D + i /DT . (4)

Equation (4) can be in fact understood as a definition of Dµ
T

Dµ
T = Dµ − vµv ·D, (5)

which is indeed transverse to v: vµDµ
T = 0.

We can write the heavy quark lagrangian

LQ =
[
Q̄v(x) + B̄v(x)

]
e+iMQv·xe−iMQv·x

{
/v i v ·D +MQ/v + i /DT −MQ

}
[Qv(x) +Bv(x)]

=
[
Q̄v(x) + B̄v(x)

] {
/v i v ·D +MQ (/v − 1) + i /DT

}
[Qv(x) +Bv(x)] . (6)
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Now we shall apply to (6) relations (3)

LQ = Q̄v(x) i v ·DQv(x)− B̄v(x) (i v ·D + 2MQ) Bv(x)

+Q̄v(x) i /DTBv(x) + B̄v(x) i /DTQv(x). (7)

Note that there is no mass term for Qv. Note also that there are no diagonal terms of i /DT

Let’s summarize what has been achieved so far:

• We have performed field redefinition at tree level. We correctly describe couplings
to kµ ∼ ΛQCD gluons.

• Antiparticles are integrated out. They have 2MQ mass gap.

• Possible mixing of Bv with external heavy quark Qv is suppressed by 1/mQ.

• Number of heavy quarks is preserved (no QQ̄ production).

2 Heavy quark symmetry (HQS)

First of all we have U(Nh) symmetry, where Nh is number of heavy quarks, since LQ is
independent of MQ.There is also spin symmetry. Consider spin operator

SiQ =
1

2

[
σi 0

0 σi

]
=

1

2
γ5γ

0γi. (8)

Consider an infinitesimal spin transformation

Q′v =
(

1 + i ε · ŜQ
)
Qv. (9)

This transformation changes lagrangian by

δLQ = Q̄v

[
i v ·D, i ε · ŜQ

]
Qv = 0. (10)

The commutator is zero, because v ·D does not contain γ matrices and ε ·ŜQ is space-time
independent. It follows that

/vQ′v = Q′v, (11)

which means that the spin symmetry acts within the two component subspace spanned
by (1 + /v) /2. This has immidiate consequences for heavy quark interactions (via gluon
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exchange) with the "light stuff", which does not depend on the heavy quark spin. This
not true in full QCD where ŜQ does not commute with /D.

In heavy quark interactions at low energies vµ is conserved, only kµ changes, so that’s
why we can label fields by subscript v.

Lagrangian (6) allows for clear power counting in powers of 1/MQ. However there is
still MQ hidden in field normalization. Recall fermion filed quantization

Q(x) =

∫
d3p

(2π)3/2√2Ep

∑
s

(
e−ip·xuQ(p, s)b̂(~p, s) + e+ip·xvQ(p, s)d†(~p, s)

)
. (12)

Remember that
pµ = MQv

µ + kµ. (13)

In heavy quark efective theory we are intersted only in Qv(x), which has been defined by
factoring out explicitly e−iMQv·x. Since v is conserved

Qv(x) ∼
∫

d3k

(2π)3/2√2Ep

∑
s

e−ik·xuQ(k, s)b̂(~k, s) + . . . (14)

and
i∂µQv(x) ∼ kµQv(x) (15)

which means that coordinate x corresponds to the variations of quark momenta over scales
∼ ΛQCD � MQ. So 1/MQ is explicit, except for state (e.g. heavy meson) normalization
(see lecture 11)

〈H(p′)| H(p)〉︸ ︷︷ ︸
dim −1

= 2Ep(2π)3δ(3) (p′ − p) (16)

with Ep =
√
M2

H − p2 where MQ is hidden in MH . It is therefore usefull to change state
normalization

|H(p)〉 =
√
MH

[
|H(v,k)〉+O

(
1

MQ

)]
(17)

with
〈H(v′,k′)| H(v,k)〉︸ ︷︷ ︸

dim −3/2

= 2v0(2π)3δv,v′δ
(3) (k′ − k) . (18)

The same change is also introduced for spinors

uQ(p, s) =
√
MQ uQ(v,k, s).
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Note that
√
MQ cancels MQ dependence of 1/

√
2Ep in Eq.(12) (in the leading order in

1/MQ).

3 Spectroscopy

An immediate consequence of heavy quark spin symmetry is degenreacy of spin 0 and spin
1 Q̄q (or Qq̄) mesons. Since light quarks form SU(3)-flavor triplet we expect two triplets
of almost degenerate (pseudo)scalar and vector mesons. The experemintal situation is
summarized in Table below (antiparticles are not listed):

Q̄q name charge
s = 0

[Mev]

s = 1

[Mev]
∆Q[MeV]

c̄d D− − 1879.65 2010.26 142.02

c̄u D0 0 1864.83 2006.85 130.61

c̄s D−s − 1968.34 2112.20 143.86

b̄d B0 0 5279.65
5324.70

45.05

b̄u B+ + 5279.34 45.36

b̄s B0
s 0 5366.88 5415.40 48.52

We see that indeed vector-scalar splitting ∆ is (almost) independent of the light quark
content and is much smaller than meson masses. It is smaler for B mesons than for D
mesons as expected, since degeneracy violation is of the order if 1/MQ. Particle Data
Group estimates heavy quark masses to be

Mc ' 1.27 GeV, Mb ' 4.18 GeV,

which gives
Mb

Mc

' 3.29

On the other hand on average
∆c

∆b

' 3.

Another phenomenological test of HQS for mesons consists in writing a mass formula
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for spin partners:

Mmeson = αMQ + β +


µ 1
MQ

for s = 0

µ∗ 1
MQ

for s = 1

(19)

where * stands for vector mesons and constants α, β and µ(∗) are universal. Then

δ = (M∗)2 −M2 = (M∗ +M) (M∗ −M) →
MQ→∞

2αMQ
µ∗ − µ
MQ

= const. (20)

For nonstrange mesons we have:

δD = 0.51÷ 0.55, δB = 0.48

and for strange
δDs = 0.59, δBs = 0.52.
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Situation is similar for baryons with one heavy quark. The other two light quarks (so
called diquarks) may form antisymmetric and symmetric combinations corresponding to
SU(3) flavor triplet and sextet. This can be seen in the following way. The product of
two quark fields can be always decomposed into antisymmetric and symmetric parts that
form SU(3) invariants:

q1(x)q2(y) =
1

2
(q1(x)q2(y)− q2(x)q1(y)) +

1

2
(q1(x)q2(y) + q2(x)q1(y)) .

Antisymmetric part vanishes when q1 = q2, so it has only three components ud, us and
ds, and symmetric part may have additionally uu, dd and ss components (six in total).
Antisymmetric combination has spin 0, whereas symmetric one spin 1. This is illustrated
in Fig. 1

Figure 1: Heavy baryons as system composed from light diquark and heavy quark. Two
invariant light quark configurations: triplet and sextet are possible.

This pattern is confirmed experimentally. Figs. 2 and 3 show masses and splittings
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in the c and b sector. Spin one sextet diquark can couple with heavy quark spin to spin
1/2 and 3/2, and these states should be – according to heavy quark spin symmetry –
degenerate. In the charm sector this splitting is approximately 70 MeV and in the bottom
sector 20 MeV. The ratio of this splittings is again approximately equal to 3 confirming
1/MQ violation of heavy quark spin symmetry.

Figure 2: Heavy baryons with charm.
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Figure 3: Heavy baryons with bottom quark. Ω∗b has not been observed so far.

4 Covariant representation of fields1

HQS can relate matrix elements of weak currents such as for example

〈D| c̄γµ(1− γ5)b |B〉

describing decays of B mesons to D mesons or leptonic decays (like pion decay) through
the current

〈0| q̄γµγ5Q |H〉 .

We want to construct effective fields H(Q)
v that desribe heavy mesons composed of Q̄αqβ

(where α and β are Drac indices), that describe simultaneously (pseudo)scalar and vector
mesons and have proper transformation properties with respect to the Lorentz transfor-

1A. Manohar and M. Wise Heavy Quark Physics, Cambridge University Press.
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mation denoted by Λ:
x′ = Λx, v′ = Λv. (21)

We require
H

(Q)′
v′ (x′) = D(Λ)H(Q)

v (x)D(Λ)−1 (22)

where D(Λ) is spinor Lorentz transformation. This transformation can be alternatively
written as

H(Q)
v (x)→ H(Q)′

v (x) = D(Λ)H
(Q)

Λ−1v(Λ
−1x)D(Λ)−1. (23)

The field H(Q)
v (x) is a linear combination of the pseudoscalar field P (Q)

v (x) and the vector
field P

∗(Q)
vµ (x) that annihilate the sl = 1/2 meson multiplet. Vector particles have a

polarization vector εµ, with ε2 = −1, and v·ε = 0. The amplitude for P ∗(Q)
vµ to annihilate

a vector particle is εµ. A simple way to combine the two fields into a single field with the
desired transformation properties is to define:

H(Q)
v =

1 + /v

2

[
/P
∗(Q)
v (ε) + iP (Q)

v γ5

]
. (24)

Let’s observe that
/vH(Q)

v = H(Q)
v , H(Q)

v /v = −H(Q)
v (25)

since v · P ∗(Q) = 0.
Recall Dirac matrices in the Dirac represenation:

γ0 =

[
1 0

0 −1

]
, γi =

[
0 σi

−σi 0

]
, γ5 =

[
0 1

1 0

]

In the rest frame vµr = (1, 0, 0, 0) component P ∗(Q)
vr0 = 0 because v · P ∗(Q) = 0 and

H(Q)
vr =

[
1 0

0 0

]
×

{
−

[
0 σi

−σi 0

]
P
∗(Q)
vri

+ i

[
0 1

1 0

]
P (Q)
vr

}

=

[
0 iP

(Q)
vr − σ · P ∗(Q)

vr

0 0

]
. (26)

The indices α and β of the field
[
H

(Q)
vr

]
αβ

label the spinor indices of the heavy quark

Qα and the light degrees of freedom, respectively. The field H
(Q)
vr transforms as a (1/2,

1/2) representation under ŜQ ⊗ Ŝl .
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Recall that action of the symmetry operator O on some field ψ beloging to represen-
tation of this symmetry is

Oψ .+ ψO .

so that the field transformation is obtained by subtracting the last term (we are not
nterested in action of O on some trial function denoted as .), which gives a commutator

[O, ψ] .

The spin operators SQ and Sl for the heavy quark and light degrees of freedom acting
on the H(Q)

vr field are: [
ŜQ, H

(Q)
vr

]
=

1

2
ΣH(Q)

vr ,[
Ŝl, H

(Q)
vr

]
= −1

2
H(Q)
vr Σ (27)

where

Σi =
i

4
εijk

[
γj, γk

]
=

[
σi 0

0 σi

]
. (28)

Under infinitensimal rotations (neglecting angular momentum)

δH(Q)
vr = iε ·

[(
ŜQ + Ŝl

)
, H(Q)

vr

]
=

i

2
ε ·
[
Σ , H(Q)

vr

]
. (29)

Let’s compute this commutator

i

2
ε ·
[
Σ , H(Q)

vr

]
=

i

2
εi

[ σi 0

0 σi

]
,

 0 iP
(Q)
vr − σj

[
P
∗(Q)
vr

]
j

0 0


=

i

2
εi

[
0 − [σi, σj]

0 0

] [
P ∗(Q)
vr

]
j

= εiεijk

[
0 σk

0 0

] [
P ∗(Q)
vr

]
j
. (30)
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This ammounts to

δP (Q)
vr = 0,

δP ∗(Q)
vr = ε× P ∗(Q)

vr , (31)

which are the transformations of spin zero and spin one fields, respectively.
Under transformations that correspond only to ŜQ or Ŝl scalar and vector fileds mix

(exercise). For example under ŜQ

δP (Q)
vr = −1

2
ε · P ∗(Q)

vr ,

δP ∗(Q)
vr =

1

2
ε× P ∗(Q)

vr − 1

2
ε P (Q)

vr . (32)

5 Heavy meson decay constants

Decay constants (as in the case of Goldstone bosons) are defined as

〈0| q̄γµγ5Q(0) |P (p)〉 = − i
dim 1

fP p
µ = −ifP MPv

µ,

〈0| q̄γµQ(0) |P ∗(p, ε)〉 = fP ∗
dim 2

εµ. (33)

If not for the HQS symmetry constants fP and fP ∗ would be independent. Note that the
above relations are written in terms of fields normalized according to (16).

Currents can be written in terms of Qv fields:

q̄ΓµQ = q̄ΓµQv + . . .

In heavy quark effective theory we have one matrix element instead of two

〈0| q̄ΓµQv(0) |H(v, p)〉 (34)

where H(v, p) are heavy quark fields normalized according to (18). The current q̄ΓµQv

transforms under heavy quark rotation

q̄ΓµQv → q̄ΓµDQ(R)Qv (35)

where DQ(R) is the rotation matrix of a heavy quark filed. However, we need transfor-
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mation of the current in terms of H(Q)
v , which should transform in the same manner as

(35). To find the proper representation we will use the following trick:

• Pretend that Γµ transforms as Γµ → ΓµD−1
Q (R), so that the quark current is invari-

ant.

• Write down operators that are invariant when

Qv → DQ(R)Qv,

Γµ → ΓµD−1
Q (R),

H(Q)
v → DQ(R)H(Q)

v .

• Set Γµ to γµγ5 or γµ to obtain the operator with the correct transformation prop-
erties.

Remarks:

• The current must have single H(Q)
v field (matrix element (34) has only one meson).

• Field H(Q)
v and Γµ must appear as a product ΓµH

(Q)
v to satisfy invariance property.

• For Lorentz covariance, the current must have the form

Tr
(
X ΓµH(Q)

v

)
where X is a Lorentz bispinor.

The only parameter that X can depend on is v, so

X = a0(v2 = 1) + a1(v2 = 1)/v. (36)

This form is compatible with Lorentz covarince and parity (not discussed). Recall (25)

H(Q)
v /v = −H(Q)

v .

Hence

Tr
(
X ΓµH(Q)

v

)
= a0 Tr

(
ΓµH(Q)

v

)
+ a1 Tr

(
/v ΓµH(Q)

v

)
= (a0 − a1)︸ ︷︷ ︸

=a/2

Tr
(

ΓµH(Q)
v

)
. (37)
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Therefore only one constant enters, rather than two:

q̄ΓµQv =
a

2
Tr
(

ΓµH(Q)
v

)
. (38)

It is now a question of Dirac algebra to calculate the traces (exercise):

a

2
Tr
(

ΓµH(Q)
v

)
= a×


−ivµPv for Γµ = γµγ5

P ∗µv for Γµ = γµ
(39)

and we get

〈0| q̄γµγ5Q(0) |P (p)〉 = −i
√
MPav

µ = −ifP MPv
µ,

〈0| q̄γµQ(0) |P ∗(p, ε)〉 =
√
MP ∗aε

µ = fP ∗ε
µ (40)

where we have "undone" change of normalization (17). Note that in fact up to 1/MQ

MP = MP ∗ . Looking at the definitions of decay constants we have

fP =
a√
MP

, fP ∗ = a
√
MP ∗ . (41)

Eliminating a we get
fB
fD

=

√
MD

MB

. (42)

Experimentally fP are not known and we take them from lattice QCD

fB
fD

=
173

197
= 0.88,

√
MD

MB

=

√
1880

5280
= 0.60.

If true, there are large corrections to HQS symmetry.
This method can be applied to more complicated matrix elements reducing the number

of independent parameters. For example weak decays

B̄ → D + l + ν

B̄ → D∗ + l + ν
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can be parametrized in QCD by 6 independent formfactors:

〈D(p′)|V µ
∣∣B̄(p)

〉
= f+(q2)(p+ p′)µ + f−(q2)(p− p′)µ,

〈D∗(p′, ε)|V µ
∣∣B̄(p)

〉
= g(q2) εµναβε∗ν (p+ p′)α(p− p′)β,

〈D∗(p′, ε)|Aµ
∣∣B̄(p)

〉
= −if(q2)ε∗µ − iε∗ · p

[
a+(q2)(p+ p′)µ + a−(q2)(p− p′)µ

]
.

In heavy quark theory there is only one form-factor known as Isgur-Wise function ξ(v ·v′).
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