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1 Heavy quark lagrangian

So far we have discussed effective QCD in the limit mu,d,s → 0 and Mc,b,t →∞ in a way
that heavy quarks simply disapeared from the QCD Lagrangian. Here we would like to
construct effective theory that will describe particles (mesoms or baryons) that contain
at leas one heavy quark and some "light stuff". To this end we shall construct a pertinent
lagragian, that will encode the relevant physics. It is clear that heavy quark inside a light
hadron is almost on-shell and knows very little about the cloud of light quarks and gluons
around. Therefore we shall parametrize heavy quark momentum in the following way:

pµ = MQv
µ + kµ (1)

where kµ is a small (compared to MQ) momentum that puts heavy quark off-shell. For
on shell quark we have

p2 = M2
Qv

2 + 2MQv · k + k2 = M2
Q (2)

which implies
v2 = 1, v · k = 0, k2 �M2

Q. (3)

This means that the "velocity" four-vector is normalized to 1. For off-shell quarks we
allow v · k 6= 0 but stll keep k2 � M2

Q. In this kinematics we can write heavy quark
propagator in the following way:

i

/p−MQ + iε
=

i
(
/p+MQ

)
p2 −M2

Q + iε
=

1 + /v

2

i

v · k + iε
+O

(
1

MQ

)
. (4)

Note that the propagator in (4) does not contain MQ and one can safely take the limt
MQ →∞. One can easily check that (1 + /v) /2 is a projection operator, because(

1 + /v

2

)2

=
1

4

(
1 + 2/v + /v2

)
=

1 + /v

2
. (5)

This follows from the fact that /v2 = v2 = 1. Similarly (1− /v) /2 is also o projection
operator and

1− /v
2

1 + /v

2
= 0.

Before we answer what do these operators project out, let us consider a heavy quark
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QCD vertex −igT aγµ. This vertex does not depend on MQ but if it is inside a larger
diagram it is sandwiched between the projectors from (4). A we will see external spinors
will also have the projectors, so we need to calculate

1 + /v

2
γµ

1 + /v

2

To this end we shall use
/vγµ = −γµ/v + 2vµ

and obtain

1 + /v

2
γµ

1 + /v

2
= γµ

1− /v
2

1 + /v

2
+ vµ

1 + /v

2

= 0 +
1 + /v

2
vµ

1 + /v

2
. (6)

Therefore for heavy quarks
−igT aγµ → −igT avµ. (7)

Let us recall that in the Dirac representation for γ matrices solutions of Dirac equation
take the following form

u(p, s) =
√
Ep +m

[
χ(s)

σ·p
Ep+m

χ(s)

]
, v(p, s) =

√
Ep +m

[
σ·p
Ep+m

χ(s)

χ(s)

]
, (8)

for quarks (bispinor u) and antiquarks (bispinor v). Here χ(s) are two component spinors
corresponding to two projections of s3 labelled by s = ±. For a heavy quark at rest we
have

uQ(p, s) =
√

2MQ

[
χ(s)

0

]
, vQ(p, s) =

√
2MQ

[
0

χ(s)

]
(9)

and the projection operators read (recall that vµ = (1, 0, 0, 0) for heavy quark at rest)

1 + /v

2
=

(
12×2 0

0 0

)
,

1− /v
2

=

(
0 0

0 12×2

)
. (10)

So wee see that the following is true in the heavy quark rest frane:

1 + /v

2
uQ(p, s) = uQ(p, s),

1− /v
2

vQ(p, s) = vQ(p, s). (11)
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Now, we extend this definition for any vector v. In the limit m = MQ →∞

1 + /v

2
uQ(p, s) = uQ(p, s) +O

(
1

mQ

)
,

1− /v
2

uQ(p, s) = 0 +O
(

1

mQ

)
. (12)

Now we decompose the heavy quark field that enters the lagrangian for a heavy quark

LQ = Q̄(x)
(
i /D −MQ

)
Q(x) (13)

(where Dµ = ∂µ − igAµ is covariant QCD derivative) in the following way

Q(x) = e−iMQv·x [Qv(x) +Bv(x)]

where

1 + /v

2
Qv(x) = Qv(x),

1− /v
2

Bv(x) = Bv(x),

1− /v
2

Qv(x) = 0,
1 + /v

2
Bv(x) = 0. (14)

The second line of course follows from the first line due to the properties of the projection
operators. Alternatively the same equations can written as

/vQv(x) = Qv(x), /vBv(x) = −Bv(x). (15)

It is convenient to decompose the covariant derivative into two parts

i /D = /v iv ·D + i /DT . (16)

Equation (16) can be in fact understood as a definition of Dµ
T

Dµ
T = Dµ − vµv ·D, (17)

which is indeed transverse to v: vµDµ
T = 0.

We need to calculate now i /DQ(x). Obsrve that

i∂µe
−iMQv·x [. . .] = e−iMQv·x {MQvµ + i∂µ} [. . .] .
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We see now that

iv · ∂ e−iMQv·x [. . .] = e−iMQv·x {MQ + i v · ∂} [. . .]

i∂µT e
−iMQv·x [. . .] = e−iMQv·x {MQv

µ + i∂µ − vµMQ − vµi v · ∂} [. . .]

= e−iMQv·x {i∂µ − vµi v · ∂} [. . .] .

Hence
i /De−iMQv·x [. . .] = e−iMQv·x

{
MQ/v + /v i v ·D + i /DT

}
[. . .] . (18)

We could replace partial derivative by the covariant one because e−iMQv·xcommutes with
−ig /A. We can write the heavy quark lagrangian

LQ =
[
Q̄v(x) + B̄v(x)

]
e+iMQv·xe−iMQv·x

{
/v i v ·D +MQ/v + i /DT −MQ

}
[Qv(x) +Bv(x)]

=
[
Q̄v(x) + B̄v(x)

] {
/v i v ·D +MQ (/v − 1) + i /DT

}
[Qv(x) +Bv(x)] . (19)

Now we shall apply to (19) relations (15)

LQ = Q̄v(x) i v ·DQv(x)− B̄v(x) (i v ·D + 2MQ) Bv(x)

+Q̄v(x) i /DTBv(x) + B̄v(x) i /DTQv(x). (20)

Note that there is no mass term for Qv.This follows from the fact that

MQ (/v − 1)Qv = 0 (21)

from (15). On the contrary

MQ (/v − 1)Bv(x) = −2MQBv(x). (22)

Note also that there are no diagonal terms of i /DT (exercise). This follows from the identity
(exercise)

(1 + /v) /DT = /DT (1− /v) , (23)

Let’s summarize what has been achieved so far:

• We have performed field redefinition at tree level. We correctly describe couplings
to kµ ∼ ΛQCD gluons.

• Antiparticles are integrated out. They have 2MQ mass gap.
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• Possible mixing of Bv with external heavy quark Qv is suppressed by 1/mQ.

• Number of heavy quarks is preserved (no QQ̄ production).
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