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1 Goldberger-Treiman relation

Mass difference between neutron (939.56 MeV) and proton (938.27 MeV) is only 1.29
MeV. So small mass difference prohibits strong neutron decay, since the mass of the
lightest negative (and positive) meson π∓ is 139.57 MeV. Therefore neutron can decay
only weakly to electron and ν̄e, since me = 0.51 MeV. Decay to muon is not possible
because mµ = 105.66 MeV. Nevertheless it is clear that nucleon-pion coupling should be
large, since strong coupling constant is approximately 106 larger that the weak coupling
constant. Therefore, even though the W bosons couple directly to quarks (and therefore
to nucleons), it maybe more profitable for a neutron to emit first a virtual pion, which
then decays weakly. Such process is further enhanced due to the pion propagator that
explodes for momenta of the order of the muon mass.

Figure 1: Neutron beta decay via direct coupling to W and via virtual pion decay.

Consider nucleon matrix element of the axial current, which can be parametrized in
terms of two Dirac structures an therefore in terms of two effective couplings (from-factors)

〈p(p′)|Aaµ |n(p)〉 = Ūn(p′)
λa
2

[
GA(q2)γµγ5 +GP (q2)qµγ5

]
Up(p) (1)

and multiply it by q = p− p′. Note that spinors describing nucleons fulfill Dirac equation

(
/p−M

)
UN(p) = 0 (2)

where we assume that to a good approximation proton and neutron masses are equal to
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M . We have therefore

qµ 〈p(p′)|Aaµ |n(p)〉 =
(
−2MGA(q2) + q2GP (q2)

)(
Ūn(p′)

λa
2
γ5Up(p)

)
. (3)

In the limit of unbroken chiral symmetry, which is our case here, since we assumed Mn =

Mp = M axial current is conserved, and we must have

−2MGA(q2) + q2GP (q2) = 0. (4)

Consider the limit when q2 → 0. The first term is well measured experimentally: gA =

GA(0) = 1.257. Although this numerical value is of course important, what is here of real
imprtance is the fact that GA(0) 6= 0, which implies that GP (q2) must be of a form

GP (q2) = 2M
gA
q2

(5)

for small q2. The pole structure of the pseudoscalar form-factor GP (q2) must be related
to the (massless in this case) Goldstone boson (pion) propagator. Typically nucleon-pion
interaction is introduced via the following vertex

gπNN
(
Ū iτaγ5U

)
and therefore the pion contribution to the axial current matrix element is equal to

igπNN
(
Ū iτaγ5U

) i
q2

(iFπqµ) (6)

where the last term follows from the axial current matrix element between a pion state
and vacuum. Factor i in front of the whole expression (6) follows from the convention
concerning Feynman rules that renders the whole amplitude real. Comparing (6) with (5)
and (3) we obtain Goldberger-Treiman relation

gπNNFπ = MgA (7)

between nucleon axial coupling (in a sense direct coupling to W ) and pion-nucleon cou-
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pling. Numerically g2πNN/4π = 14.6, and we obtain gπNN = 13.54 and

gπNNFπ = MgA

1260 = 1180

which means that GT relation is satisfied at the level of 7%.

2 Higher order lagrangians and loops

Effective lagrangian

L2 =
F 2

4
Tr
(
∂µU∂

µU †
)

(8)

describes GBs (pion in the SU(2) case) interactions that can be calculated by expanding

U = exp

(
i
λ · φ
F

)
(9)

to any order in the number of fields φ. Coefficients of these terms are fixed by chiral sym-
metry (the lowest order term has to be canonical Klein-Gordon kinetic energy). Whatever
the numer of fields there will be only two derivarives. For example the four-filed lagrangian
(exercise) reads:

L(4)
2 =

1

6F 2
{(∂µφ · φ) (∂µφ · φ)− (∂µφ · ∂µφ) (φ · φ)} . (10)

It is, however, possible to add to (8) terms with more derivatives. For example some
of the four-derivative terms have the following form

L4 = L1

{
Tr
(
∂µU∂

µU †
)}2

+ L2 Tr
(
∂µU∂νU

†)Tr
(
∂µU∂νU †

)
+L3 Tr

(
∂µU∂

µU †∂νU∂
νU †
)

+ . . . (11)

where dots stay for all other allowed by chiral symmetry and inependent terms. For an
interacting theory (∂µ → Dµ) there are alltogether 10 such terms (includng mass terms).
Unlike in the case of (8) coefficients Li are not constrained by chiral symmetry and have
to be extracted from data.

There is, however, one problem with such effective theory: it is not renormalizable.
This means that logarithmic (thanks God!) divergences cannot be removed by a finite
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number of renormalization constants. To see this, let’s consider a loop correction to ππ
scattering.

At first consider the lowest order interaction corresponding to (10) depicted in Fig. 2.

Figure 2: Pion-pion scattering. Arrows denote momentum flow. Label "2" inside the
vertex blob indicates number of derivatives in the vertex.

The Feynman rule for this amplitude reads

M (p1, p2, p3, p4) ∼ (p1 + p2) · (p3 + p4)− p1 · p2 − p3 · p4. (12)

If we resca;e all momenta (and masses) p→ tp this amplitude scales

M (p1, p2, p3, p4)→ t2M (p1, p2, p3, p4) (13)

which reflects the fact that it corresponds two two derivative vertex.
Now consider a loop correction to ππ scattering depicted in Fig. 3. The corresponding

amplitude (neglecting all irrelevant factors) takes the following form:

Mloop ∼
∫
d4k [(p1 + p2) · (p1 + p2)− p1 · p2 − (p1 + p2 − k) · k]

1

k2 −m2

1

(p1 + p2 − k)2 −m2

[(p1 + p2) · (p3 + p4)− (p1 + p2 − k) · k − p3 · p4] (14)

After rescaling
pi → tpi, m→ tm, k → tq
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Figure 3: Loop contribution to pion-pion scattering. Arrows denote momentum flow.
Label "2" inside the vertex blobs indicates number of derivatives in the vertex. Solid lines
correspond to off-shell pions.

we obtain

Mloop ∼
vertices︷︸︸︷
t4

props︷︸︸︷
t−4

integration︷︸︸︷
t4∫

d4l [(p1 + p2) · (p1 + p2)− p1 · p2 − (p1 + p2 − l) · l]

1

k2 −m2

1

(p1 + p2 − l)2 −m2

[(p1 + p2) · (p3 + p4)− (p1 + p2 − k) · l − p3 · p4] . (15)

Hence
Mloop → t4Mloop. (16)

This means that the divergence enters at the level of four derivative terms. So it "renor-
malizes" coefficients Li rather than the coefficeints following from L2. Hence we can
absorb these divergences to unrenormalized (bare) constants Li → Lri . When we calcu-
late loop corrections involving vertices from L4 (i.e. involving renormalized constants Lri )
new divernces appear, but they affect some new couplings with higher number of deriva-
tives, but not Lri ’s themselves. This theory is opperative at low energies, so we typcyally
stop at the four derivative level (corresponding to p4). This scheme is known as chiral
perturbation theory and the resacling procedure introduced above is known as Weinberg
power counting.
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3 Linear sigma model

So far we have used an explicitly non-linear parametrization of the U matrix

U = U = exp

(
i
λ · φ
F

)
.

It is possible, at least for SU(2) to use another paramtrization

U =
1

F
(σ + iτ · π) (17)

with a constraint
σ2 + π2 = F 2, (18)

which follows from the unitarity of U. Expanding (8) in terms of (17) we will get different
verces of ππ interactions. If external pions are on mass shell the amplitudes obtained
from both parametrizations are the same (equivalence theorem). There exist methods for
off-shell amplitudes (Gaser and Leutwyler: Green functions and Ward identities).
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