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Goldstone bosons

(01i1Q2(¢), P2 [0 gnmz{o'éwwwm o1 P S0 |0>}

p9—0

¢"(p)) = ip'Fp0®

From hermicity and Lorentz invariance (0| A%

and we get 2

(04[Qg (1), Pa] [0) = —Fy (6°| Fu [0) = 3 (a9)
Here [}, is Goldstone boson (pion) decay constant. Its value is ~ 93 MeV
(different normalizations).

« There must exist states for which (0] A2(0) |n) and (0| P, |n) are non-zero

* Itis not vacuum, because (0| P,|0) =0

* Energy of these states must vanish, because the quark condendate is time
independent

e SoweneedE,=0

e Such states are massless Goldstone bosons |q§b>

* GBs are (pseudo)scalars — still to be proven



Dimensions

Field dimensions:

]
= [Lym] = [FuF*] = [FMV]Q —+ [Fw] =12
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Phenomenological values of condensates:

(7q) ~ —(250MeV)?
(SR Py o (400 GeV)!
(s
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Dimension of currents

[Ju] = [QFMQ] =3



Dimensions

In the case of quantum fields there are different conventions. Here we follow:
T-P. Cheng and L-F. Li Gauge theory of elementary particle physics

Pl ) = / : 'k ! [aa(k)e_ik'w' + al(k)e“k‘r]

21)3? V2Ey
6] = 1 laa®)] =3

Indeed  [aq(k),al(K)] = &% (k—K

Fock state:  [¢a(k)) = +/(2m)%2Eyal(k)|0) — [[44(k))] = —1

Matrix element of axial current:

(0] 74°(0) [#*(p))] = 3—1=2
[?:p“Fo(sab:I = 2



Goldstone bosons

We have shown that in QCD axial SU(3) symmetry is spontaneously broken, and
this implies the existence of eight Goldstone bosons. What is the effective lagrangian?
Natural choice for example:

1 » - c ; c
L= 5 qul@“qba o V(¢l¢a) Q)a - [6’ OCTad‘l:Iab gbb - Qsa T ?’90 ( adj)ab gbb T ..

This lagrangian is invariant under SU(3) but it is not clear how it transforms under SU4(3).
We will show, that we can write a lagrangian which is much more "powerfull" (infinte

series in powers on field derivatives) and takes explicitly into account SUA(3) breaking.
For this we will need a bit of mathematics.

Consider a hamiltonian H (note a "hat"!) which is invariant under a compact Lie group (3
Moreover, the ground state is invariant only under a subgroup H . We have therefore

n = ng — ny Goldstone bosons @;, which are continous, real functions on Minkowski
space M*. Define vector space

M, ={®: M* — R"|¢; : M* — R continuous}

and find its elements.
based on: Stefan Scherer Introduction to Chiral Perturbation Theory, hep-ph/0210398v1



Goldstone bosons

M; = {®: M* — R"|¢; : M* — R continuous}

Define a mapping that associates with each pair (g, ®) € G x M,
g — group element,
® — n component vector with elements ¢;

an element ¢(g, ®) € M such that
ple,®) =®V & € My, e identity of G,
L/D(gl: HO(QQ (b)) — W(gnga (b) V g1, 92 € G: Vq) G All

This is nothing but definition of an operation of G on M; . This mapping is not necessarily

linear:

p(g, AP) # Ap(g, ®)
Vacuum ("origin" of M;) & = 0 We require that all elements of G h € H map the origin
onto itself (little group of ® = 0)



Goldstone bosons

 His not empty, bcause identity maps the origin onto itself

« If ©(h1,0) = @(hy,0) = 0 then @(hihy,0) = @(hy, ¢(he,0)) = p(h1,0) =0
which means that h{h, € H

e Inverse elementis alsoin H: @(h™1,0) = o(h™, p(h,0)) = p(h™h,0) = (e, 0)
which means that h™t € H

Define left coset gH ={gH|g € G} (g is fixed) We will establish a connection
between the set of all left cosets G/H with the Goldstone boson fileds.

We will check now that all elements of a given coset map the origin onto
the same vector in R"

©(gh,0) = o(g,p(h,0)) = p(g,0) ¥ g € Gandh € H

These vectors are different if g and g are "different": ©¥(9,0) # ©(¢'.0) if ¢ & gH
This means that mapping ¢ is injective with respect to the cosets.



Goldstone bosons

Proof proceeds by negation of the thesis. Assume ©(9,0) = »(g",0)
Then

0= ¢(e,0)



Goldstone bosons

Proof proceeds by negation of the thesis. Assume ©(9,0) = »(g",0)
Then

0= ¢(e,0) = p(g7'9,0)



Goldstone bosons

Proof proceeds by negation of the thesis. Assume ©(9,0) = »(g",0)
Then

0=¢(e,0) =p(g7"'9,0) = @9, ¢(g,0))



Goldstone bosons

Proof proceeds by negation of the thesis. Assume ©(9,0) = »(g",0)
Then

0=¢(e,0) = 9(g7'9,0) = @97, (9, 0)) = w(g7", ¢(g',0))



Goldstone bosons

Proof proceeds by negation of the thesis. Assume ©(9,0) = »(g",0)
Then

0=(e,0) =0(g79,0) = (97", ¢(9,0) = (97", ¢(g',0)) = (g~ "¢",0)



Goldstone bosons

Proof proceeds by negation of the thesis. Assume ©(9,0) = »(g",0)
Then

0=1(e,0) =0(g7'9,0) = (g, ¢(9,0)) = 0(g™", (g, 0)) = ©(g7 "¢, 0)

However, this implies 979’ € H or ¢’ € gH, which contradicts our assumption.

We will now discuss transformations of & . To each & corresponds a coset gH

with ¢ fixed: )
® = ¢(f,0) = ¢(gh,0)
Consider transformation of & with ¢ (g)
p(g, ) = ©(g, ¢(gh, 0)) = v(ggh,0) = (f',0) = &’ f € g(gH)

To obtain transformed ®’ from & we need to multiply the left coset gH represinting
by g to obtain a new left coset represnting ¢’.



Goldstone bosons in QCD

Symmetry group of QCD _
G = SU(N) x SUN) = {(L,R)|L € SU(N),R € SU(N)}

and little group H = {(V, V)|V € SU(N)} (which is isomorphic to SU(N))
Left coset gH = {(LV,RV)|V e SU(N)} is uniquely characterized by 7 = Rt

Indeed:

(LV,RV) = (LV,RL'LV) = (1, RL") (LV,LV), ie. gH = (1,RL"H
H
c

(because ©(gh,0) = ¢(g,¢(h,0)) =¢(g,0) Vge Gandh € H)

Therefore matrix U = RL' is isomorphic to ®.



Goldstone bosons in QCD

Now, we will find transformation law for U . Recall ® = ¢(f,0) = ¢(gh,0)
and o(f',0) =®" where f' = ggh or f' € g(gH). This means, that transformation

o Uunder g = (L, R) € G is (recall §H = (1, RL")H)
ggH = (L, RRL"YH = (1, RRL'L")(L, L)H = (1, R(RL" L") H

|
= H

Hence we have U = RL'— U’ = R(RL")L' = RUL!
where we have to reintroduce space-time dependence
U(z) — RU(z)L!

We now see, how the symmetry is broken. Vacuum corresponds to U ~ 1 and the
symmetry of vacuumis R=1L.



Nonlinear realization
of SU(N) x SU(N)

We can parametrize SU(N) matrixas U(x) = exp (,l.@(lz:))

I
where for SU(2)
3
oy o Ps3 P1— 1P | _ (Y i
O(Z) — ; TZC‘bZ(l) T ( ¢1 _|_ 1@2 _@3 ) - ( \/57‘_— _ﬂ_()
or for SU(3)
8 O3 + %ﬁbs O1— 1Py Qg — i
o(r) = Z AaPa(T) = ¢1 + 7@2 —@3 - %@58 o - 1Q7
a=1 P4 + 1Q5 ®g + 107 —7§¢)8
7l %77 Vot V2K
= Vor—  —x0 +_%7} V2K?
[there exist different conventions \/iK_ \/51(0 - %77

for signs of particle fields]



Nonlinear realization
of SU(N) x SU(N)

Define  Mj = {U . M* — SU(N)|U(z) = exp ( @z(f))}
0

The homomorphism

0:Gx My — M; with o[(L, R),U](z) = RU(z)L?

defines an operation of GG on M,
1. RUL' € M3, since U € M3 and R, L' € SU(N).
2. 99[(1N><N: 1NXN)7 U]( ) - ]-NXNU( )1N><N — U(f)

3. Let g; = (L;, R;) € G and thus g19o = (L1Lo, R1Ry) € G.

lor, lg2, Ull(x) = ¢lgr, (RULY)|(w) = RuRoU () LY LY,
elg1g2. Ul(x) = RyRoU(x)(LyLy)' = RRQU(J?)L;L{-

all group requirements are fulfilled. This mapping is called nonlinear because M
is not a vector space (sum of two U matrices is not a unitary matrix).



Nonlinear realization
of SU(N) x SU(N)

The origin (vacuum) correspondsto ¢(x) =0 ,i.e. Uy =1
Indeed 99[9 — (V V) 1] — VVT =1
olg=(A,AN,1] = AtAT#1

Axial symmetry is broken, left and right fermions must be transformed the same way.

Transformation of fieds ¢(z) & b2

7 —1wad
L Y-

, , Aa X
and transformation matrix V' = exp (q@}{é) give

| ~ h e SU(3 Ay | | ,.

¢ = Aoy *—>( v VoVl =¢—i0) [77 o] + - = P+ fabeO) PpAet -
Wi i
(.f)bifabc)\c

Fields @(x) transform according to the adjoint rep. of SU(3) (like gaue fields...)



Effective lagrangian

Matrix U is our "building block". Langrangian must be symmetric under global

SU(3) xSU(3)p % U(l)v U(z) — RU(z)LT U(z) = exp (z @1(;))

The most general lagrangian with two derivatives (Weinberg lagrangian)

FO2 : LTTT
Lo = —Tr (9,U0U)

where (experimentally) Fy =~ 93 MeV can be deduced from 7" — pty,

Invariance:

U — RUL' 8,U — RO,UL' U' — LU'R' 8,U' — LOU'R

2 g
Loy ~LTe(RO,ULILOUTRY) = “0Tr( BIBO,UPUT) = Log

1 1



Effective lagrangian

Expanding U =1+ iqS/FS o dﬂU = 10,0/ Fp + - -
F2_ [i0,6 [ "¢ 1
— Z0my. A s = P N N
Ceff 1 Tr [ FO FO =+ 4T1()‘a0,u§f a)\ba be) ~+
L. ., | [—
— Zapﬂbaal QSbTr()‘a)\b) I o == §0p¢adl ¢a N Lint

we get usual lagrangian plus interactions that proceed only through derivatives
(momenta). For small momenta higher derivative terms are small. Interactions
are even in @q Parity

ba(T,t) > —da(—T,t)  U(F,t) — Ut(=Z,1)

This lagrangian is unigue up to total derivatives. E.g.:

Tr[(0,0"U)UT] = 9,[Tr(o*UU)| — Tr(0"U0,U")

Single derivatives vanish under trace Tr(9,UUT) =0



Currents

Left currents. Set ©F = 0 and make left transformation space-time dependent:
el = 68l(z)
Aa

v 2
/ : L)‘a . L)\a
a“U — @LU = 8ILU ]_ -+ Z@a 7 -+ U’lau@a 7
T [ T -' L)\a o i L)\a T
o — 8" = (1-i6L%) Ut ~i0,8L 7Y

2
and: 5L = %Tr [Uz'@#@ﬁ%a“UTjté)ﬂU (—z’@“@ﬁ%m)]

F? A
= ZozaﬂegTr |:2(8MUTU = UTOI.LU)] - 8'LLUTU — _U'i.aNU
B e i o i
= —10,0,Tr ()\ad“U U ) .
4
Left current: 95 2
P = . = i M (BT

00,0L ~ 4



Currents

Left currents. Set ©F = 0 and make left transformation space-time dependent:
el = 68l(z)
Aa

v 2
/ : L)‘a . L)\a
a“U — @LU = 8ILU ]_ -+ Z@a 7 -+ U’lau@a 7
T [ T -' L)\a o i L)\a T
o — 8" = (1-i6L%) Ut ~i0,8L 7Y

2
and: 5L = %Tr [Uz'@#@ﬁ%a“UTjté)ﬂU (—z’@“@ﬁ%m)]

F2 )\a,
= Ioiaueg"rr [Q(aﬂU*U— UWU)] &= Ut = —Utoru
) ——-—
= 10,0, Tr (AO*UTD) .
Left current: 561 2 Right current: 561 2
ma _ IO%elt _ L0y gupty) g = 2% _ _T0 (0 ST
It = 5560 i Tr (A0"U0) Jj 50,68 = 4 r (A )



Currents

We can now calculate vector and axial currents:

JioF e
3 =
Internal parity:
Jua 7,
OMUU = —UTOMU =
Jun 9

H,a ma
Jo 4 I =

F02 nrrt
—i—Tr (Aa[U, 04U,

Jee. . J F 0 2 Tr (AU, 0#U™})

—¢

2
—z’%Tr[/\a(UT@“‘U — U]

Fy

—i TrAa(-0*U'U + UUT)] = Jp*°
F? T T

i TeAa(UT04U + 0*UUY)]

FO —LTr[\ (*UTU + UOFUT)] = —J,"

"4



Matrix elemen of axial current

ha Fy
Axial current  J4 = —Z—OTI ()\ {U, &IUT})

7 TR
expanding: g = ZO Tr ()\ {1 e e —i)\b?: P + .. }) = —Fa0 .+
0

Matrix element of axial current between GB and vacuum:

O] J4*(z) |¢°(p)) = —Fo(0]0"¢"(z)|d"(p))
d*y’
— —FO/ (2 [) au —lp:l‘<0|g/) ’Qﬁb p

—(@m)15 (—p) 5“”
= iple PTEH.

This agrees with previous result from QCD

(0]A45,(0)|¢"(p)) = ip, Fod**



Mass term

InQCD m, 0 0
Ly =—qrMar, — @ M'qr, M= 0 myg 0
0 0 m

This would be invariantif M — RMLT

What is the effective lagrangian that respects this would be symmetry? To the lowest

orderin M

F}B
Lo, = ——Te(MU" + UM")

where DBy is a new parameter. This means that the ground state (U = 1)
energy density is

(Heg) = —F2 Bo(my + mg + my,)

In QCD 9(0|Hqep|0) | (- W,
— ~(0|gq|0)g = =
B e 3< 17q|0)0 3<(1(1>

and we have ~
3F3Bo = —(qq)



Mass term

F2B,

Lop. = Te(MUT + UM?Y) 3F:By = —{qq)

Constant By has dimension 1 (energy).

Expanding U(z) = exp (idﬁ(:ﬂ)) gives Ly = —%Tl(ﬁbgM) +

Fo
Using 8 "+gm V2t V2K?
Y Aata(x) = \f - -+ 2 V2K°
a=1 V2K~ V2K0 —%7}
one gets

Te(¢p>M) = 2(my +mg)mtr™ 4+ 2(my + my) KTK™ 4 2(mg + my) K°K°

2 My + mg + 4mg
—|—(mu + md)TrOﬂ' <+ —(mu - md)ﬂon T ; o

V3

mixing



Mass term

Te(p’M) = 2(my +mg)mtr™ 4+ 2(my + m) KTK™ 4+ 2(mg + my) K°K°
2 w + Mg + 4mg
+ (M + mg)mO7° + —=(my — mg)m'n + o m; . .

V3

Isospin symmetric limit m, = mg = m

Lo, = —%Tr(&]\i) implies the following meson masses
]\f[g = 2Bgm,
M = By(m+m,), where By = —(qq)/(3F})

M2 = %BO (m + 2m,)

Gell-Mann — Okubo mass relation (does not depend on By )

4MZ = 4Bo(m + my) = 2Bo(m + 2m,) + 2Bym = 3M?2 + M?

L = 4x494°>=976144MeV? R = 3 x 5482 + 1382 = 919956 MeV?2



Mass term

Te(¢*’M) = 2(my +mg)nTm™ + 2(my + m) KTK™ + 2(mg + m,) K°K°

2 my, + myg +4m
/ Bl g ool u 8.8
+(my + mg)m T + \/§(m“’ maq)m N + 3 n
Isospin symmetric limit m, = mg = m
Lo, = —%Tr(qﬂ\l) implies the following meson masses
]\[72 = 2Bgm,
Mz = By(m+ms), where By = —(qq)/(3F%)
2
Af[,? = §BO (m =+ 2m,)
: L—R
Gell-Mann — Okubo mass relation (does not depend on By ) - -
1

AM}: = ABo(m + my) = 2Bo(m + 2my) + 2Bom = 3M2 + M

L = 4x494°>=976144MeV? R = 3 x 5482 + 1382 = 919956 MeV?2



PCAC
partially conserved axial current

Let's calculate

d3k7 1
<0|Cba |(b p> _ / —lka:

- Jo

e Olaulk)y/ (202 Byl () 10)
—ik-x 0|
- Oab f—zp @

aj(p) |0)

Every field that has this property is called interpolating field.
Let's consider isospin subgroup of SU(3). Axial current matrix element

(O A7 (= )|TJ((I)> a 'iqleoe_iq'I@j
Let's take its divergence

(010,45 (z)|mi(q)) = iq“FOOHe_iq'l"ciij = \\[iFoe_"‘q""dij = 2'm,quFoe_iq'l’5ij
This means that divergence of the axial current, up to a constant, is itself pion
interpolating field. On the other hand aﬂAﬁL = img (qTiv5q) = mgb;

so pseudoscalar density is also a pion interpolating field



PCAC
partially conserved axial current

Let's calculate

(0] 6% () |¢"(p

(13k 1
| G game ™ Olaatk)y/ 2Bl p)

— [ \E (0] au(k)al(p) [0)

ab —zp x

Every field that has this property is called interpolating field.
Let's consider isospin subgroup of SU(3). Axial current matrix element

(0] A% (@) |m;(q)) = ig" Foe ™75, 2 my {da)
Let's take its divergence

B B
(010, 4%(@)|7;(q)) = iq"Fodue 0%6;; = M2Foe™9%5;; = 2m,BoFoe 175

This means that divergence of the axial current, up to a constant, is itself pion
. . . L . =

interpolating field. On the other hand aﬂAé = img (qTiv5q) = mgb;

so pseudoscalar density is also a pion interpolating field



Chiral lagrangian

_F
4

F2B,

: 2

Tr (9,U0"U") + Te (MUt +UM)  Ulz) = exp (i¢(x)>

Fy

Chiral lagrangian is expressed in terms of a U field

8 a0 + —\%n Vot V2Kt
6(x) = D Mabal@)=| V21~ -+ g V2K
a=1 N V2K° — %1)

* Nonzero quark condensate in chiral limit is a sufficient cond. for a spotaneus xSB

* Quark mass term gives masses to GBs

e Gell-Mann — Okubo mass formula emerges — satisfied experimentally

* Terms with more derivetives and with higher powers of M are possible

e Such theory is not renormalizable, but there is a method to make it predictive:
chiral perturbation theory

* Coupling to photons, W and Z by covariant derivatives



