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Figure 1: Loop diagrams contributing to the decay of axial-vector current (dashed line)
to two photons.

Consider the following loop contribution to the decay of axial-vector current to two
photons (Fig. 1):
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where
q = k1 + k2. (2)

Note that the second line in (1) and the first line are related by a replacement µ ←→ ν
and k1 ←→ k2. We expect that vector currents are conserved

kµ1Tµνλ = kν2Tµνλ = 0

and that the axial current is conserved in a massless limit

qλTµνλ = 2mTµν . (3)

In fact on general grounds we expect Tµν to be obtained from Tµνλ by replacing γλγ5 →
γ5.

Let’s first check vector current conservation kµ1Tµνλ with the help of
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For the second trace we need
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and get
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so the full result is proportional to

kµ1Tµνλ ∼
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(2π)4
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Note that second and third term cancelled. When we change variable in the first integral
p→ p+ k1 we get that p− q → p− k2 and it seems that also the two remaining integrals
cancel.

To check axial current conservation let’s use

/qγ5 = −γ5/q
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[
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]
− γ5

[
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]
+
[
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]
γ5 + 2mγ5. (9)

This replacement results in
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Therefore from the loop diagram (1) we obtain that

qλTµνλ = 2mTµν + ∆(1)
µν + ∆(2)

µν (11)



where
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µν (12)
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+

∫
d4k

(2π)4
Tr

[
i

/p−m
γ5γµ

i

(/p− /k2)−m
γν + γ5

i

(/p− /q)−m
γµ

i

(/p− /k2)−m
γν

]
.

In order to define ∆
(1,2)
µν separately let’s combine the first term in the first line and the

second term in the second line and the two remaining ones, use periodicity of trace and
anticommutation of γ5with γµ:

∆(1)
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∫
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Tr
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,
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(13)

The question is: are ∆
(1,2)
µν equal zero? At first sight it does seem so. Changing variables

in the second part of ∆
(1)
µν

p→ p+ k2 (14)

and of ∆
(2)
µν

p→ p+ k1 (15)

seems to nullify ∆
(1,2)
µν . However, the integrals (13) are UV divergent. Indeed

∆(1,2)
µν ∼

∞∫
dpp3

1

p2
∼
∞∫
dpp. (16)

Due to the minus sign in (13) the divergence is only linear. Nevertheless the change of
variables in a linearly divergent integral is not well defined. To illustrate this consider an
integral that naively is equal to zero

∞∫
−∞

dx [f(x+ a)− f(x)] (17)

where f is a function that does not vanish at infinity:

f(±∞) 6= 0. (18)

Expanding in a
∞∫
−∞

dx [f(x+ a)− f(x)] = a [f(∞)− f(−∞)] +
a2

2
[f ′(∞)− f ′(−∞)] + . . . (19)



We see that there is a contribution from the integration limits even if f ′(±∞) = 0.
Consider the n-dimensional Euclidean integral

∆(~a) =

∫
dn~r [f(~r + ~a)− f(~r)]

=

∫
dn~r~a · ~∇f(~r) + . . .

= ~a · ~nSn(R) f(~R) (20)

where the last line has been obtained by applying the Gauss theorem and

~n =
~R

R
(21)

with Sn(R) being the surface of n sphere. To calculate the integral in Minkowski space
we have to make Wiick rotation by replacing r0 → ir0, hence in 4 dimensions d4r = id4~r
and

∆(a) = 2iπ2aµ lim
R→∞

R2Rµ f(R). (22)

We have used the formula for n sphere (for even n):

Sn(R) =
2πn/2

(n/2− 1)!
Rn−1 =


2πR for n = 2

2π2R3 for n = 4
. (23)

Now we shall calculate what is the change of (1) if the integration momentum p is
shifted by a four-vector

a = αk1 + (α− β)k2. (24)

Let’s define the difference

∆µνλ(a) = Tµνλ(p→ p+ a)− Tµνλ (25)

where Tµνλ is defined by (1). We have

∆µνλ(a) = −
∫

d4p

(2π)4

{
Tr

[
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1
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]}
+ (µ←→ ν, k1 ↔ k2) . (26)

Expanding (26) according to (22) we arrive at

∆µνλ(a) = −
∫

d4p

(2π)4
aσ

∂

∂pσ
Tr

[
1

/p−m
γλγ5

1

(/p− /q)−m
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1

(/p− /k1)−m
γµ

]
+ (µ←→ ν, k1 ↔ k2) . (27)



Since we are interested in p→∞ we can neglect finite pieces in the denominator:

∆µνλ(a) = − 1

(2π)4
2iπ2aσ lim

P→∞
P 2Pσ Tr

[
/Pγλγ5 /Pγν /Pγµ

] 1

P 6
+ (µ←→ ν, k1 ↔ k2) . (28)

With the help of1
Tr
[
/Pγλγ5 /Pγν /Pγµ

]
= 4iP 2εαµνλP

α (29)
we arrive at

∆µνλ(a) =
1

(2π)4
8π2εµνλα aσ lim

P→∞

P σPα

P 2
+ (µ←→ ν, k1 ↔ k2) . (30)

Taking symmetric limit

lim
P→∞

P σPα

P 2
=

1

4
gσα (31)

we obtain

∆µνλ(a) =
1

8π2
εαµνλa

α + (µ←→ ν, k1 ↔ k2)

=
1

8π2
εαµνλ (αkα1 + (α− β)kα2 − αkα2 − (α− β)kα1 )

=
β

8π2
εαµνλ (k1 − k2)α . (32)

We see that there is an ambiguity in ∆µνλ. At this moment β is a free parameter. We
can fix it by imposing current conservation, however – as we will see – no β exists so that
both vector and axial-vector currents ar conserved simultaneously.

Lets calculate ∆
(1,2)
µν using the same trick with shifting the integration variable. Indeed

∆(1)
µν =

∫
d4p

(2π)4
Tr

[
i

/p−m
γ5γν

i

(/p− /k1)−m
γµ −

i

(/p− /k2)−m
γ5γν

i

(/p− /q)−m
γµ

]
(33)

=

∫
d4p

(2π)4
Tr

[
1

(/p− /k2)−m
γ5γν

1

(/p− /k2 − /k1)−m
γµ −

1

/p−m
γ5γν

1

(/p− /k1)−m
γµ

]
where the first part in the second line corresponds to the second part with variable p
shifted by p→ p− k2 and therefore can be evaluated wit the help of (22) where a = −k2:

∆(1)
µν = − 1

(2π)4
2iπ2kρ2 lim

P→∞

Pρ
P 2

Tr
[
/Pγ5γν(/P − /k1)γµ

]
. (34)

Note that we have included k1 term because the trace with /P . . . /P vanishes, and also
terms proportional to m vanish. We have therefore

∆(1)
µν =

1

(2π)4
2iπ2kρ2k

σ
1 lim
P→∞

PρP
α

P 2
Tr
[
γαγ5γνγσγµ

]
=

1

(2π)4
2iπ2kρ2k

σ
1

1

4
(−)Tr

[
γ5γργνγσγµ

]︸ ︷︷ ︸
4iερνσµ

= − 1

8π2
εµνσρ k

σ
1k

ρ
2 . (35)

1Remember that εαµνλ = −εαµνλ



We obtain ∆
(2)
µν by µ←→ ν, k1 ↔ k2, hence

∆(1)
µν = ∆(2)

µν . (36)

We are now in position to calculate the divergence of an axial current with shifted inte-
gration variable p, which we denote by T (β)

qλTµνl(β) = qλ (Tµνl(β)− Tµνl(0)) + qλTµνl(0)

= qλ∆µνλ(β) + 2mTµν + ∆(1)
µν + ∆(2)

µν

= 2mTµν −
1

4π2
εµνσρ k

σ
1k

ρ
2 + (k1 + k2)

λ β

8π2
εαµνλ (k1 − k2)α

= 2mTµν −
1− β
4π2

εµνσρ k
σ
1k

ρ
2 . (37)

We shall now apply the same procedure to calculate

kµ1Tµνλ(β) = kµ1 (Tµνλ(β)− Tµνλ(0)) + kµ1Tµνλ(0)

= kµ1Tµνλ(0) + kµ1
β

8π2
εαµνλ (k1 − k2)α

= kµ1Tµνλ(0) +
β

8π2
ενλσρk

σ
1k

ρ
2 . (38)

Now we have to calculate kµ1Tµνλ(0) directly

kµ1Tµνλ = −
∫

d4p

(2π)4
Tr

[
1

/p−m
γλγ5

1

(/p− /q)−m
γν

1

(/p− /k1)−m
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]
−
∫
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1
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]
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Now we shall use

/k1 = (/p−m)−
(
(/p− /k1)−m

)
=

(
(/p− /k2)−m

)
−
(
(/p− /q)−m

)
, (40)

which gives (see the beginning of this note)

kµ1Tµνλ = −
∫

d4p

(2π)4{
Tr
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1

(/p− /q)−m
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1

(/p− /q)−m
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]
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[
1
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1

(/p− /q)−m
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]
− Tr

[
1
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γλγ5

1

(/p− /k2)−m
γν

]}
= −

∫
d4p

(2π)4
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[
γλγ5

1

(/p− /q)−m
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1
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]
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[
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1
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1
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.



We see that the first piece can be obtained from the second one by the shift p → p − k1
and can be evaluated by (22):

kµ1Tµνλ = − 1

(2π)4
2iπ2(−)kσ1 lim

R→∞

Pσ
P 2

Tr
[
γλγ5(/P − /k2)γν /P

]
= − 1

8π2
i
1

4
Tr
[
γλγ5γργνγσ

]
kσ1k

ρ
2

=
1

8π2
ενλσρk

σ
1k

ρ
2 . (42)

Hence
kµ1Tµνl(β) =

1 + β

8π2
ενλσρk

σ
1k

ρ
2 . (43)

We see that it is impossible to maintain both Ward identities (37) and (43) by a suitable
choice of β. Because we know that vector current (charge) is conserved, we are forced to
choose β = −1.Then

qλTµνl = 2mTµν −
1

2π2
εµνσρ k

σ
1k

ρ
2 , (44)

which means that axial current is anomalous. This can be translated to the configuration
space

∂λAλ(x) =
1

(4π)2
εµνσρF

µν(x)F σρ(x) +O(m). (45)


