QCD

Anomaly

Figure 1: Loop diagrams contributing to the decay of axial-vector current (dashed line) to two photons.

Consider the following loop contribution to the decay of axial-vector current to two photons (Fig. 1):

$$
\begin{align*}
T_{\mu \nu \lambda}= & -i \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{i}{(\not p-\not q)-m} \gamma_{\nu} \frac{i}{\left(\not p-\not k_{1}\right)-m} \gamma_{\mu}\right] \\
& -i \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{i}{(\not p-\not q)-m} \gamma_{\mu} \frac{i}{\left(\not p-\not k_{2}\right)-m} \gamma_{\nu}\right] \tag{1}
\end{align*}
$$

where

$$
\begin{equation*}
q=k_{1}+k_{2} . \tag{2}
\end{equation*}
$$

Note that the second line in (1) and the first line are related by a replacement $\mu \longleftrightarrow \nu$ and $k_{1} \longleftrightarrow k_{2}$. We expect that vector currents are conserved

$$
k_{1}^{\mu} T_{\mu \nu \lambda}=k_{2}^{\nu} T_{\mu \nu \lambda}=0
$$

and that the axial current is conserved in a massless limit

$$
\begin{equation*}
q^{\lambda} T_{\mu \nu \lambda}=2 m T_{\mu \nu} . \tag{3}
\end{equation*}
$$

In fact on general grounds we expect $T_{\mu \nu}$ to be obtained from $T_{\mu \nu \lambda}$ by replacing $\gamma_{\lambda} \gamma_{5} \rightarrow$ γ_{5}.

Let's first check vector current conservation $k_{1}^{\mu} T_{\mu \nu \lambda}$ with the help of

$$
\begin{equation*}
\not k_{1}=(\not p-m)-\left(\left(\not p-\not k_{1}\right)-m\right), \tag{4}
\end{equation*}
$$

which gives

$$
\begin{align*}
& \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(\not p-q q)-m} \gamma_{\nu} \frac{i}{\left(\not p-\not k_{1}\right)-m} \not k_{1} \frac{i}{\not p-m}\right] \\
= & i \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(\not p-q q)-m} \gamma_{\nu} \frac{i}{\left(\not p-\not k_{1}\right)-m}\right]-i \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(\not p-q q)-m} \gamma_{\nu} \frac{i}{\not p-m}\right] . \tag{5}
\end{align*}
$$

For the second trace we need

$$
\begin{equation*}
\not k_{1}=\left(\not p-\not k_{2}-m\right)-\left(\left(\not p-\not k_{1}-\not k_{2}\right)-m\right)=\left(\not p-\not k_{2}-m\right)-((\not p-\not q)-m) \tag{6}
\end{equation*}
$$

and get

$$
\begin{align*}
& \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{i}{(\not p-\not q)-m} \not k_{1} \frac{i}{\left(\not p-\not k_{2}\right)-m} \gamma_{\nu}\right] \\
= & i \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(\not p-q q)-m} \gamma_{\nu} \frac{i}{\not p-m}\right]-i \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{\left(\not p-\not k_{2}\right)-m} \gamma_{\nu} \frac{i}{\not p-m}\right] \tag{7}
\end{align*}
$$

so the full result is proportional to

$$
\begin{align*}
k_{1}^{\mu} T_{\mu \nu \lambda} \sim & \int \frac{d^{4} p}{(2 \pi)^{4}} \tag{8}\\
& \left\{\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(\not p-\not q)-m} \gamma_{\nu} \frac{i}{\left(\not p-\not k_{1}\right)-m}\right]-\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q q)-m} \gamma_{\nu} \frac{i}{\not p-m}\right]\right. \\
& \left.+\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(\not p-q q)-m} \gamma_{\nu} \frac{i}{\not p-m}\right]-\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{\left(\not p-\not k_{2}\right)-m} \gamma_{\nu} \frac{i}{\not p-m}\right]\right\} \\
= & \int \frac{d^{4} p}{(2 \pi)^{4}} \\
& \left\{\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{(\not p-q q)-m} \gamma_{\nu} \frac{i}{\left(\not p-\not k_{1}\right)-m}\right]-\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{i}{\left(\not p-\not k_{2}\right)-m} \gamma_{\nu} \frac{i}{\not p-m}\right]\right\} .
\end{align*}
$$

Note that second and third term cancelled. When we change variable in the first integral $p \rightarrow p+k_{1}$ we get that $p-q \rightarrow p-k_{2}$ and it seems that also the two remaining integrals cancel.

To check axial current conservation let's use

$$
\begin{align*}
q \gamma_{5} & =-\gamma_{5} q \\
& =\gamma_{5}[(\not p-q q)-m]-\gamma_{5}[\not p-m] \\
& =\gamma_{5}[(\not p-q q)-m]+[\not p-m] \gamma_{5}+2 m \gamma_{5} . \tag{9}
\end{align*}
$$

This replacement results in

$$
\begin{align*}
q^{\lambda}\left[\frac{i}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{i}{(\not p-q)-m}\right]= & 2 m \frac{i}{\not p-m} \gamma_{5} \frac{i}{(\not p-q q)-m} \\
& +i \frac{i}{\not p-m} \gamma_{5}+i \gamma_{5} \frac{i}{(\not p-q)-m} . \tag{10}
\end{align*}
$$

Therefore from the loop diagram (1) we obtain that

$$
\begin{equation*}
q^{\lambda} T_{\mu \nu \lambda}=2 m T_{\mu \nu}+\Delta_{\mu \nu}^{(1)}+\Delta_{\mu \nu}^{(2)} \tag{11}
\end{equation*}
$$

where

$$
\begin{align*}
& \Delta_{\mu \nu}^{(1)}+\Delta_{\mu \nu}^{(2)} \tag{12}\\
= & \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{5} \gamma_{\nu} \frac{i}{\left(\not p-\not k_{1}\right)-m} \gamma_{\mu}+\gamma_{5} \frac{i}{(\not p-q q)-m} \gamma_{\nu} \frac{i}{\left(\not p-\not k_{1}\right)-m} \gamma_{\mu}\right], \\
+ & \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{5} \gamma_{\mu} \frac{i}{\left(\not p-\not k_{2}\right)-m} \gamma_{\nu}+\gamma_{5} \frac{i}{(\not p-\not q)-m} \gamma_{\mu} \frac{i}{\left(\not p-\not k_{2}\right)-m} \gamma_{\nu}\right] .
\end{align*}
$$

In order to define $\Delta_{\mu \nu}^{(1,2)}$ separately let's combine the first term in the first line and the second term in the second line and the two remaining ones, use periodicity of trace and anticommutation of γ_{5} with γ_{μ} :

$$
\begin{align*}
\Delta_{\mu \nu}^{(1)} & =\int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{5} \gamma_{\nu} \frac{i}{\left(\not p-\not k_{1}\right)-m} \gamma_{\mu}-\frac{i}{\left(\not p-\not k_{2}\right)-m} \gamma_{5} \gamma_{\nu} \frac{i}{(\not p-\not q)-m} \gamma_{\mu}\right], \\
\Delta_{\mu \nu}^{(2)} & =\int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{5} \gamma_{\mu} \frac{i}{\left(\not p-\not k_{2}\right)-m} \gamma_{\nu}-\frac{i}{\left(\not p-\not k_{1}\right)-m} \gamma_{5} \gamma_{\mu} \frac{i}{(\not p-q q)-m} \gamma_{\nu}\right] . \tag{13}
\end{align*}
$$

The question is: are $\Delta_{\mu \nu}^{(1,2)}$ equal zero? At first sight it does seem so. Changing variables in the second part of $\Delta_{\mu \nu}^{(1)}$

$$
\begin{equation*}
p \rightarrow p+k_{2} \tag{14}
\end{equation*}
$$

and of $\Delta_{\mu \nu}^{(2)}$

$$
\begin{equation*}
p \rightarrow p+k_{1} \tag{15}
\end{equation*}
$$

seems to nullify $\Delta_{\mu \nu}^{(1,2)}$. However, the integrals (13) are UV divergent. Indeed

$$
\begin{equation*}
\Delta_{\mu \nu}^{(1,2)} \sim \int^{\infty} d p p^{3} \frac{1}{p^{2}} \sim \int^{\infty} d p p \tag{16}
\end{equation*}
$$

Due to the minus sign in (13) the divergence is only linear. Nevertheless the change of variables in a linearly divergent integral is not well defined. To illustrate this consider an integral that naively is equal to zero

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x[f(x+a)-f(x)] \tag{17}
\end{equation*}
$$

where f is a function that does not vanish at infinity:

$$
\begin{equation*}
f(\pm \infty) \neq 0 \tag{18}
\end{equation*}
$$

Expanding in a

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x[f(x+a)-f(x)]=a[f(\infty)-f(-\infty)]+\frac{a^{2}}{2}\left[f^{\prime}(\infty)-f^{\prime}(-\infty)\right]+\ldots \tag{19}
\end{equation*}
$$

We see that there is a contribution from the integration limits even if $f^{\prime}(\pm \infty)=0$. Consider the n-dimensional Euclidean integral

$$
\begin{align*}
\Delta(\vec{a}) & =\int d^{n} \vec{r}[f(\vec{r}+\vec{a})-f(\vec{r})] \\
& =\int d^{n} \vec{r} \vec{a} \cdot \vec{\nabla} f(\vec{r})+\ldots \\
& =\vec{a} \cdot \vec{n} S_{n}(R) f(\vec{R}) \tag{20}
\end{align*}
$$

where the last line has been obtained by applying the Gauss theorem and

$$
\begin{equation*}
\vec{n}=\frac{\vec{R}}{R} \tag{21}
\end{equation*}
$$

with $S_{n}(R)$ being the surface of n sphere. To calculate the integral in Minkowski space we have to make Wiick rotation by replacing $r_{0} \rightarrow i r_{0}$, hence in 4 dimensions $d^{4} r=i d^{4} \vec{r}$ and

$$
\begin{equation*}
\Delta(a)=2 i \pi^{2} a^{\mu} \lim _{R \rightarrow \infty} R^{2} R_{\mu} f(R) \tag{22}
\end{equation*}
$$

We have used the formula for n sphere (for even n):

$$
S_{n}(R)=\frac{2 \pi^{n / 2}}{(n / 2-1)!} R^{n-1}=\left\{\begin{array}{ccc}
2 \pi R & \text { for } & n=2 \tag{23}\\
2 \pi^{2} R^{3} & \text { for } & n=4
\end{array} .\right.
$$

Now we shall calculate what is the change of (1) if the integration momentum p is shifted by a four-vector

$$
\begin{equation*}
a=\alpha k_{1}+(\alpha-\beta) k_{2} . \tag{24}
\end{equation*}
$$

Let's define the difference

$$
\begin{equation*}
\Delta_{\mu \nu \lambda}(a)=T_{\mu \nu \lambda}(p \rightarrow p+a)-T_{\mu \nu \lambda} \tag{25}
\end{equation*}
$$

where $T_{\mu \nu \lambda}$ is defined by (1). We have

$$
\begin{align*}
\Delta_{\mu \nu \lambda}(a)= & -\int \frac{d^{4} p}{(2 \pi)^{4}}\left\{\operatorname{Tr}\left[\frac{1}{\not p+\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(\not p+\not p-\not q)-m} \gamma_{\nu} \frac{1}{\left(\not p+\not p-\not k_{1}\right)-m} \gamma_{\mu}\right]\right. \\
& \left.-\operatorname{Tr}\left[\frac{1}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(\not p-\not q)-m} \gamma_{\nu} \frac{1}{\left(\not p-\not k_{1}\right)-m} \gamma_{\mu}\right]\right\} \\
& +\left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right) . \tag{26}
\end{align*}
$$

Expanding (26) according to (22) we arrive at

$$
\begin{align*}
\Delta_{\mu \nu \lambda}(a)= & -\int \frac{d^{4} p}{(2 \pi)^{4}} a^{\sigma} \frac{\partial}{\partial p^{\sigma}} \operatorname{Tr}\left[\frac{1}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(\not p-\not p)-m} \gamma_{\nu} \frac{1}{\left(p p-\not k_{1}\right)-m} \gamma_{\mu}\right] \\
& +\left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right) . \tag{27}
\end{align*}
$$

Since we are interested in $p \rightarrow \infty$ we can neglect finite pieces in the denominator:

$$
\begin{equation*}
\Delta_{\mu \nu \lambda}(a)=-\frac{1}{(2 \pi)^{4}} 2 i \pi^{2} a^{\sigma} \lim _{P \rightarrow \infty} P^{2} P_{\sigma} \operatorname{Tr}\left[\not P \gamma_{\lambda} \gamma_{5} \not P \gamma_{\nu} \not P \gamma_{\mu}\right] \frac{1}{P^{6}}+\left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right) \tag{28}
\end{equation*}
$$

With the help of ${ }^{1}$

$$
\begin{equation*}
\operatorname{Tr}\left[P P \gamma_{\lambda} \gamma_{5} \not P \gamma_{\nu} \not P \gamma_{\mu}\right]=4 i P^{2} \varepsilon_{\alpha \mu \nu \lambda} P^{\alpha} \tag{29}
\end{equation*}
$$

we arrive at

$$
\begin{equation*}
\Delta_{\mu \nu \lambda}(a)=\frac{1}{(2 \pi)^{4}} 8 \pi^{2} \varepsilon_{\mu \nu \lambda \alpha} a_{\sigma} \lim _{P \rightarrow \infty} \frac{P^{\sigma} P^{\alpha}}{P^{2}}+\left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right) \tag{30}
\end{equation*}
$$

Taking symmetric limit

$$
\begin{equation*}
\lim _{P \rightarrow \infty} \frac{P^{\sigma} P^{\alpha}}{P^{2}}=\frac{1}{4} g^{\sigma \alpha} \tag{31}
\end{equation*}
$$

we obtain

$$
\begin{align*}
\Delta_{\mu \nu \lambda}(a) & =\frac{1}{8 \pi^{2}} \varepsilon_{\alpha \mu \nu \lambda} a^{\alpha}+\left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right) \\
& =\frac{1}{8 \pi^{2}} \varepsilon_{\alpha \mu \nu \lambda}\left(\alpha k_{1}^{\alpha}+(\alpha-\beta) k_{2}^{\alpha}-\alpha k_{2}^{\alpha}-(\alpha-\beta) k_{1}^{\alpha}\right) \\
& =\frac{\beta}{8 \pi^{2}} \varepsilon_{\alpha \mu \nu \lambda}\left(k_{1}-k_{2}\right)^{\alpha} . \tag{32}
\end{align*}
$$

We see that there is an ambiguity in $\Delta_{\mu \nu \lambda}$. At this moment β is a free parameter. We can fix it by imposing current conservation, however - as we will see - no β exists so that both vector and axial-vector currents ar conserved simultaneously.

Lets calculate $\Delta_{\mu \nu}^{(1,2)}$ using the same trick with shifting the integration variable. Indeed

$$
\begin{align*}
\Delta_{\mu \nu}^{(1)} & =\int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{5} \gamma_{\nu} \frac{i}{\left(\not p-\not k_{1}\right)-m} \gamma_{\mu}-\frac{i}{\left(\not p-\not k_{2}\right)-m} \gamma_{5} \gamma_{\nu} \frac{i}{(\not p-\not p)-m} \gamma_{\mu}\right] \tag{33}\\
& =\int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{1}{\left(\not p-\not k_{2}\right)-m} \gamma_{5} \gamma_{\nu} \frac{1}{\left(\not p-\not k_{2}-\not k_{1}\right)-m} \gamma_{\mu}-\frac{1}{\not p-m} \gamma_{5} \gamma_{\nu} \frac{1}{\left(\not p-\not k_{1}\right)-m} \gamma_{\mu}\right]
\end{align*}
$$

where the first part in the second line corresponds to the second part with variable p shifted by $p \rightarrow p-k_{2}$ and therefore can be evaluated wit the help of (22) where $a=-k_{2}$:

$$
\begin{equation*}
\Delta_{\mu \nu}^{(1)}=-\frac{1}{(2 \pi)^{4}} 2 i \pi^{2} k_{2}^{\rho} \lim _{P \rightarrow \infty} \frac{P_{\rho}}{P^{2}} \operatorname{Tr}\left[\not P \gamma_{5} \gamma_{\nu}\left(\not P-\not k_{1}\right) \gamma_{\mu}\right] \tag{34}
\end{equation*}
$$

Note that we have included k_{1} term because the trace with $\not P \ldots \not P$ vanishes, and also terms proportional to m vanish. We have therefore

$$
\begin{align*}
\Delta_{\mu \nu}^{(1)} & =\frac{1}{(2 \pi)^{4}} 2 i \pi^{2} k_{2}^{\rho} k_{1}^{\sigma} \lim _{P \rightarrow \infty} \frac{P_{\rho} P^{\alpha}}{P^{2}} \operatorname{Tr}\left[\gamma_{\alpha} \gamma_{5} \gamma_{\nu} \gamma_{\sigma} \gamma_{\mu}\right] \\
& =\frac{1}{(2 \pi)^{4}} 2 i \pi^{2} k_{2}^{\rho} k_{1}^{\sigma} \frac{1}{4}(-) \underbrace{\operatorname{Tr}\left[\gamma_{5} \gamma_{\rho} \gamma_{\nu} \gamma_{\sigma} \gamma_{\mu}\right]}_{4 i \varepsilon_{\rho \nu \sigma \mu}} \\
& =-\frac{1}{8 \pi^{2}} \varepsilon_{\mu \nu \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho} . \tag{35}
\end{align*}
$$

[^0]We obtain $\Delta_{\mu \nu}^{(2)}$ by $\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}$, hence

$$
\begin{equation*}
\Delta_{\mu \nu}^{(1)}=\Delta_{\mu \nu}^{(2)} . \tag{36}
\end{equation*}
$$

We are now in position to calculate the divergence of an axial current with shifted integration variable p, which we denote by $T(\beta)$

$$
\begin{align*}
q^{\lambda} T_{\mu \nu l}(\beta) & =q^{\lambda}\left(T_{\mu \nu l}(\beta)-T_{\mu \nu l}(0)\right)+q^{\lambda} T_{\mu \nu l}(0) \\
& =q^{\lambda} \Delta_{\mu \nu \lambda}(\beta)+2 m T_{\mu \nu}+\Delta_{\mu \nu}^{(1)}+\Delta_{\mu \nu}^{(2)} \\
& =2 m T_{\mu \nu}-\frac{1}{4 \pi^{2}} \varepsilon_{\mu \nu \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho}+\left(k_{1}+k_{2}\right)^{\lambda} \frac{\beta}{8 \pi^{2}} \varepsilon_{\alpha \mu \nu \lambda}\left(k_{1}-k_{2}\right)^{\alpha} \\
& =2 m T_{\mu \nu}-\frac{1-\beta}{4 \pi^{2}} \varepsilon_{\mu \nu \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho} . \tag{37}
\end{align*}
$$

We shall now apply the same procedure to calculate

$$
\begin{align*}
k_{1}^{\mu} T_{\mu \nu \lambda}(\beta) & =k_{1}^{\mu}\left(T_{\mu \nu \lambda}(\beta)-T_{\mu \nu \lambda}(0)\right)+k_{1}^{\mu} T_{\mu \nu \lambda}(0) \\
& =k_{1}^{\mu} T_{\mu \nu \lambda}(0)+k_{1}^{\mu} \frac{\beta}{8 \pi^{2}} \varepsilon_{\alpha \mu \nu \lambda}\left(k_{1}-k_{2}\right)^{\alpha} \\
& =k_{1}^{\mu} T_{\mu \nu \lambda}(0)+\frac{\beta}{8 \pi^{2}} \varepsilon_{\nu \lambda \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho} . \tag{38}
\end{align*}
$$

Now we have to calculate $k_{1}^{\mu} T_{\mu \nu \lambda}(0)$ directly

$$
\begin{align*}
k_{1}^{\mu} T_{\mu \nu \lambda}= & -\int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{1}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(\not p-q q)-m} \gamma_{\nu} \frac{1}{\left(\not p-\not k_{1}\right)-m} \not k_{1}\right] \\
& -\int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{1}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(\not p-q q)-m} \not k_{1} \frac{1}{\left(\not p-\not k_{2}\right)-m} \gamma_{\nu}\right] \tag{39}
\end{align*}
$$

Now we shall use

$$
\begin{align*}
\not k_{1} & =(\not p-m)-\left(\left(\not p-\not k_{1}\right)-m\right) \\
& =\left(\left(\not p-\not k_{2}\right)-m\right)-((\not p-\not q)-m), \tag{40}
\end{align*}
$$

which gives (see the beginning of this note)

$$
\begin{align*}
k_{1}^{\mu} T_{\mu \nu \lambda}= & -\int \frac{d^{4} p}{(2 \pi)^{4}} \\
& \left\{\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{1}{(\not p-q q)-m} \gamma_{\nu} \frac{1}{\left(\not p-\not k_{1}\right)-m}\right]-\operatorname{Tr}\left[\frac{1}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(\not p-q q)-m} \gamma_{\nu}\right]\right. \\
& \left.+\operatorname{Tr}\left[\frac{1}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{(\not p-q q)-m} \gamma_{\nu}\right]-\operatorname{Tr}\left[\frac{1}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{1}{\left(\not p-\not k_{2}\right)-m} \gamma_{\nu}\right]\right\} \\
= & -\int \frac{d^{4} p}{(2 \pi)^{4}} \tag{41}\\
& \left\{\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{1}{(\not p-q q)-m} \gamma_{\nu} \frac{1}{\left(\not p-\not k_{1}\right)-m}\right]-\operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \frac{1}{\left(\not p-\not k_{2}\right)-m} \gamma_{\nu} \frac{1}{\not p-m}\right]\right\} .
\end{align*}
$$

We see that the first piece can be obtained from the second one by the shift $p \rightarrow p-k_{1}$ and can be evaluated by (22):

$$
\begin{align*}
k_{1}^{\mu} T_{\mu \nu \lambda} & =-\frac{1}{(2 \pi)^{4}} 2 i \pi^{2}(-) k_{1}^{\sigma} \lim _{R \rightarrow \infty} \frac{P_{\sigma}}{P^{2}} \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5}\left(\not P-\not k_{2}\right) \gamma_{\nu} \not P\right] \\
& =-\frac{1}{8 \pi^{2}} i \frac{1}{4} \operatorname{Tr}\left[\gamma_{\lambda} \gamma_{5} \gamma_{\rho} \gamma_{\nu} \gamma_{\sigma}\right] k_{1}^{\sigma} k_{2}^{\rho} \\
& =\frac{1}{8 \pi^{2}} \varepsilon_{\nu \lambda \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho} . \tag{42}
\end{align*}
$$

Hence

$$
\begin{equation*}
k_{1}^{\mu} T_{\mu \nu l}(\beta)=\frac{1+\beta}{8 \pi^{2}} \varepsilon_{\nu \lambda \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho} . \tag{43}
\end{equation*}
$$

We see that it is impossible to maintain both Ward identities (37) and (43) by a suitable choice of β. Because we know that vector current (charge) is conserved, we are forced to choose $\beta=-1$.Then

$$
\begin{equation*}
q^{\lambda} T_{\mu \nu l}=2 m T_{\mu \nu}-\frac{1}{2 \pi^{2}} \varepsilon_{\mu \nu \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho}, \tag{44}
\end{equation*}
$$

which means that axial current is anomalous. This can be translated to the configuration space

$$
\begin{equation*}
\partial^{\lambda} A_{\lambda}(x)=\frac{1}{(4 \pi)^{2}} \varepsilon_{\mu \nu \sigma \rho} F^{\mu \nu}(x) F^{\sigma \rho}(x)+\mathcal{O}(m) \tag{45}
\end{equation*}
$$

[^0]: ${ }^{1}$ Remember that $\varepsilon_{\alpha \mu \nu \lambda}=-\varepsilon^{\alpha \mu \nu \lambda}$

