1. Express heavy quark lagrangian

$$
\mathcal{L}_{Q}=\bar{Q}(x)\left(i \not D-M_{Q}\right) Q(x)
$$

in terms of fields Q_{v} and B_{v} defined as follows:

$$
Q(x)=e^{-i M_{Q} v \cdot x}\left[Q_{v}(x)+B_{v}(x)\right]
$$

where

$$
\psi Q_{v}(x)=Q_{v}(x), \psi B_{v}(x)=-B_{v}(x) .
$$

To this end decompose covariant derivative

$$
i \not D=\psi i v \cdot D+i \not D_{T} .
$$

- Show that

$$
\bar{Q}_{v}=\bar{Q}_{v} \frac{1+\psi}{2}, \bar{B}_{v}=\bar{B}_{v} \frac{1-\psi}{2} .
$$

- Next show that

$$
i \not D e^{-i M_{Q} v \cdot x}\left[Q_{v}+B_{v}\right]=e^{-i M_{Q} v \cdot x}\left\{M_{Q} \psi+\psi i v \cdot D+i \not D_{T}\right\}\left[Q_{v}+B_{v}\right] .
$$

- Prove that

$$
(1+\psi) \not D_{T}=\not D_{T}(1-\psi) .
$$

- Using this identity show that

$$
\bar{Q}_{v}(x) \not D_{T} Q_{v}(x)=0, \bar{B}_{v}(x) \not D_{T} B_{v}(x)=0 .
$$

- Show that

$$
\bar{Q}_{v} \psi B_{v}=\bar{B}_{v} \psi Q_{v}=0 .
$$

2. Spin operator can be defined as

$$
S^{i}=\frac{1}{2} \gamma_{5} \gamma^{0} \gamma^{i}
$$

or

$$
S^{i}=\frac{i}{8} \varepsilon_{i j k}\left[\gamma^{j}, \gamma^{k}\right] .
$$

Calculate explicitly S^{i} given by these two expressions in the Dirac representations of γ matrices.
3. Heavy mesons consisting from a heavy antiquark and a light quark (or viceversa) can have spin 0 or 1 (why?). For the charm quark these mesons are called $D^{0, \pm}$ (spin 0$)$ or $\left(D^{*}\right)^{0, \pm}\left(\right.$ spin 1) and similarly for bottom quark: $B^{0, \pm}$ and $\left(B^{*}\right)^{0, \pm}$. Superscripts $0, \pm$ denote charge. Mesons with strange quark carry subscript s. Masses of these particles can be found at the web page of Particle Data Group (https://pdg.lbl.gov/2020/listings/contents_listings.html). For masses of the lightests spin 0 mesons ($M_{D, B}$) and spin $1\left(M_{D^{*}, B^{*}}\right)$ of the same charge (both non-strange and strande) calculate

$$
M_{X^{*}}^{2}-M_{X}^{2}=?
$$

where $X=D$ or B. You will find that these differences are almost the same both for D and B mesons.
4. Assume that heavy meson mass of $\operatorname{spin} s=0,1$ is given by

$$
M(s)=\alpha M_{Q}+\frac{\mu}{M_{Q}} \boldsymbol{S}_{Q} \cdot \boldsymbol{S}_{l}
$$

where \boldsymbol{S}_{Q} and \boldsymbol{S}_{l} denote spin of a heavy antiquark (quark) and spin of a light quark (antiquark) respectively. Meson spin is equal $\boldsymbol{S}=\boldsymbol{S}_{Q}+\boldsymbol{S}_{l}$ and $\boldsymbol{S}^{2}=s(s+1) \mathbf{1}$. Calculate masses of spin 0 and spin 1 mesons and then calculate the difference from the previous problem.

