QCD

problem set 12

1. For (iso)spin J lowering and raising operators act on the basis states in the following way:

$$
\begin{equation*}
J_{ \pm}|j, m\rangle=\sqrt{j(j+1)-m(m \pm 1)}|j, m \pm 1\rangle \tag{1}
\end{equation*}
$$

States $|1, m\rangle$ are given by linear combinations of basis states $\left|\phi_{i}\right\rangle(i=1,2,3)$ in the natural basis where

$$
\tilde{J}_{j k}^{i}=-i \varepsilon_{i j k} .
$$

These combinantions and explicit form of matrices $\tilde{J}_{j k}^{i}$ were given at lecture 12. Convince yourself by explicit calculations that operators $\tilde{J}_{j k}^{ \pm}$defined in natural basis fulfill (1) if the phases of states $|j, m\rangle$ are chosen as at the lecture.
2. At lecture 11 there was a misprint in the definition of a scalar field decomposition in terms of annihilation and creation operators (factor $(2 \pi)^{3}$ instead $\left.(2 \pi)^{3 / 2}\right)$. Canonical commutation relation

$$
\left[\hat{\phi}(t, \vec{x}), \hat{\pi}\left(t, \vec{x}^{\prime}\right)\right]=i \delta^{(3)}\left(\vec{x}-\vec{x}^{\prime}\right)
$$

where $\hat{\pi}(t, \vec{x})=\partial_{t} \hat{\phi}(t, \vec{x})$ (why?) implies certain commutation rule for $\left[\hat{a}(\vec{k}), \hat{a}^{\dagger}\left(\vec{k}^{\prime}\right)\right]$ where

$$
\hat{\phi}(t, \vec{x})=\int \frac{d^{3} \vec{k}}{(2 \pi)^{3 / 2} \sqrt{2 \omega_{k}}}\left[e^{-i k x} \hat{a}(\vec{k})+e^{+i k x} \hat{a}^{\dagger}(\vec{k})\right] .
$$

Find this commutation rule.
3. For on-shell heavy quark of mass M_{Q} one can write that its momentum is given as

$$
p^{\mu}=M_{Q} v^{\mu}
$$

provided $v^{2}=1$. Show that operators

$$
\frac{1}{2}(1 \pm \psi)
$$

satisfy all necessary conditions of projection operators.
4. Pove that

$$
\frac{1+\psi}{2} \gamma^{\mu} \frac{1+\psi}{2}=\frac{1+\psi}{2} v^{\mu} \frac{1+\psi}{2}
$$

5. Solutions of the Dirac equation in the Dirac (Bjorken-Drell) representation of γ matrices take the following form:

$$
u(p, s)=\sqrt{E_{p}+m}\left[\begin{array}{c}
\chi(s) \tag{2}\\
\frac{\sigma \cdot p}{E_{p}+m} \chi(s)
\end{array}\right], \quad v(p, s)=\sqrt{E_{p}+m}\left[\begin{array}{c}
\frac{\boldsymbol{\sigma} \cdot \boldsymbol{p}}{E_{p}+m} \chi(s) \\
\chi(s)
\end{array}\right],
$$

where $s=1,2$ labels spin. Solutions denoted by u correspond to particles, while solutions denoted by v to antiparticles (E_{p} is defined to be positive). Calculate action of the projection operators defined in the previous problem for a heavy fermion at rest.

