QCD

problem set 11

1. Flavor $\mathrm{SU}(3)$ left and right currents read

$$
L_{\mu}^{a}=\bar{q}_{L} \gamma_{\mu} \frac{\lambda_{a}}{2} q_{L}, R_{\mu}^{a}=\bar{q}_{R} \gamma_{\mu} \frac{\lambda_{a}}{2} q_{R}
$$

where

$$
q_{L}=\frac{1}{2}\left(1 \mp \gamma_{5}\right) q .
$$

Show that vector and axial currents take the following form

$$
\begin{aligned}
V_{\mu}^{a} & =R_{\mu}^{a}+L_{\mu}^{a}=\bar{q} \gamma_{\mu} \frac{\lambda_{a}}{2} q, \\
A_{\mu}^{a} & =R_{\mu}^{a}-L_{\mu}^{a}=\bar{q} \gamma_{\mu} \gamma_{5} \frac{\lambda_{a}}{2} q .
\end{aligned}
$$

2. In the case of fermion fields, commutation relations of scalar fields are replaced by anticommutation relations:

$$
\left\{q_{\alpha, k}(t, \vec{x}), q_{\beta, l}^{\dagger}\left(t, \vec{x}^{\prime}\right)\right\}=\delta^{(3)}\left(\vec{x}-\vec{x}^{\prime}\right) \delta_{\alpha \beta} \delta_{k l}
$$

where α, β stand for Dirac indices and k, l denote $\mathrm{SU}(3)$ indices. Relevant charges are defined as

$$
\begin{aligned}
\hat{Q}_{L, R}^{a}(t) & =\int d^{3} \vec{x} q_{L, R}^{\dagger}(t, \vec{x}) T^{a} q_{L, R}(t, \vec{x}), \\
\hat{Q}_{V}(t) & =\int d^{3} \vec{x}\left[q_{L}^{\dagger}(t, \vec{x}) q_{L}(t, \vec{x})+q_{R}^{\dagger}(t, \vec{x}) q_{R}(t, \vec{x})\right]
\end{aligned}
$$

where $T^{a}=\lambda^{a} / a$ are $\operatorname{SU}(3)$ generators (Gell-Mann matrices). Making use of the identity (prove it!)

$$
\{a b, c d\}=a\{b, c\} d-a c\{b, d\}+\{a, c\} b d-c\{a, d\} b
$$

show that

$$
\begin{aligned}
{\left[\hat{Q}_{L}^{a}, \hat{Q}_{L}^{b}\right] } & =i f^{a b c} \hat{Q}_{L}^{c} \\
{\left[\hat{Q}_{R}^{a}, \hat{Q}_{R}^{b}\right] } & =i f^{a b c} \hat{Q}_{R}^{c} \\
{\left[\hat{Q}_{L}^{a}, \hat{Q}_{R}^{b}\right] } & =0 \\
{\left[\hat{Q}_{L, R}^{a}, \hat{Q}_{V}\right] } & =0
\end{aligned}
$$

3. Effective Lagrangian describing Goldstone boson interactions reads

$$
\mathcal{L}_{\text {eff }}=\frac{F^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right)
$$

where $U=\exp (i \phi / F)$ can be expressed in terms of the physical meson fields:

$$
\phi(x)=\sum_{a} \lambda_{a} \phi^{a}(x)=\left(\begin{array}{ccc}
\pi^{0}+\eta / \sqrt{3} & \sqrt{2} \pi^{+} & \sqrt{2} K^{+} \\
\sqrt{2} \pi^{-} & -\pi^{0}+\eta / \sqrt{3} & \sqrt{2} K^{0} \\
\sqrt{2} K^{-} & \sqrt{2} \bar{K}^{0} & -2 \eta / \sqrt{3}
\end{array}\right)
$$

Expand $\mathcal{L}_{\text {eff }}$ up to 4 -field interactions and calculate flavor trace for the case of $\operatorname{SU}(2)$ (see lecture 11) and $\operatorname{SU}(3)$.
4. Decay width Γ (inverse of the particle life-time) of a particle of mass M (at rest) into two particles of masses $m_{1,2}$ reads

$$
\Gamma=\frac{1}{2 M} \int|\mathcal{M}|^{2}(2 \pi)^{4} \delta^{(4)}\left(p-k_{1}-k_{2}\right) \frac{d^{4} k_{1}}{(2 \pi)^{4}}(2 \pi) \delta\left(k_{1}^{2}-m_{1}^{2}\right) \frac{d^{4} k_{2}}{(2 \pi)^{4}}(2 \pi) \delta\left(k_{2}^{2}-m_{2}^{2}\right)
$$

where \mathcal{M} is the relevant matrix element. Show that one can perform all integrations in the above formula. As a first step perform integrations over $d E_{1,2}$. Then using $\delta^{(4)}\left(p-k_{1}-k_{2}\right)=\delta\left(M-E_{1}-M_{2}\right) \delta^{(3)}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right)$ perform integration over $d^{3} \boldsymbol{k}_{2}$. Using

$$
d^{3} \boldsymbol{k}_{1}=k_{1}^{2} d k_{1} d \Omega
$$

and assuming that matrix element \mathcal{M} does not depend on angles perform integration over $d \Omega$. Finally, using the energy δ function perform the integration over $d k_{1}$ with the help of the following change of variables:

$$
u=\sqrt{k_{1}^{2}+m_{1}^{2}}+\sqrt{k_{1}^{2}+m_{2}^{2}} .
$$

Solve the energy δ function assuming that particle 2 is massless.

