QCD
 problem set 10

1. In QCD infinitensimal change of the gauge field under the gauge transformation

$$
\Omega(x)=\exp \left(i \theta_{a}(x) T^{a}\right)
$$

can be calculated from

$$
\boldsymbol{A}_{\mu}^{\Omega}=\Omega^{\dagger}(x) \boldsymbol{A}_{\mu} \Omega(x)+\frac{i}{g} \Omega^{\dagger}(x) \partial_{\mu} \Omega(x)
$$

and reads (show it):

$$
g \delta A_{\mu}^{a}=g f^{a b c} \theta_{b}(x) A_{\mu}^{c}-\partial_{\mu} \theta_{a}(x)
$$

Calculate the change of the gauge condition

$$
G^{a}\left(A_{\mu}\right)=n^{\mu} A_{\mu}^{a}
$$

$g \delta G^{a}$ under this transformation.
2. Next calculate matrix

$$
\mathcal{M}_{a b}=g \frac{\delta G^{a}}{\delta \theta_{b}}
$$

and then rewrite the free part of the ghost action

$$
\int d^{4} x \mathcal{L}_{F P G}^{0}=\int d^{4} x \bar{\chi}_{a} \mathcal{M}_{a b}(g=0) \chi_{b}
$$

in momentum space. The inverse of this term is the ghost propagator.
3. Applying gauge condition from problem 1 to the free part of the gluon action calculate the gluon propagator (inverse of gluonic operator derived from the free part of $F_{\mu \nu} F^{\mu \nu}$) in the axial gauge.
4. For a system of $\operatorname{SU}(3)$ scalar fields $\hat{\phi}_{i}(x)$ with $i=1,2,3$ that satisfy the following commutation rules

$$
\left[\hat{\phi}_{i}(t, \vec{x}), \hat{\pi}_{j}\left(t, \vec{x}^{\prime}\right)\right]=i \delta^{(3)}\left(\vec{x}-\vec{x}^{\prime}\right) \delta_{i j}
$$

one defines charge operators

$$
\hat{Q}^{a}(t)=-i \int d^{3} \vec{x} \hat{\pi}_{i}(t, \vec{x}) T_{i j}^{a} \hat{\phi}_{j}(t, \vec{x})
$$

where matrices T^{a} satisfy $\mathrm{SU}(3)$ commutation relations:

$$
\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}
$$

Prove that

$$
\left[\hat{Q}^{a}(t), \hat{Q}^{b}(t)\right]=i f^{a b c} \hat{Q}^{c}(t)
$$

