QCD
 problem set 8

1. Winding number of the $\mathrm{SU}(2)$ gauge transformation U is defined as

$$
\begin{equation*}
N_{\mathrm{w}}=\frac{1}{24 \pi^{2}} \varepsilon^{i j k} \int d^{3} r \operatorname{Tr}\left[\left(U^{\dagger} \partial_{i} U\right)\left(U^{\dagger} \partial_{j} U\right)\left(U^{\dagger} \partial_{k} U\right)\right] . \tag{1}
\end{equation*}
$$

Calculate (1) for $U=\exp (i \vec{n} \cdot \vec{\tau} P(r))$ where $\vec{n}=\vec{r} / r$. What are the boundary conditions for $P(r)$ that ensure that N_{w} is an integer?
HINT:
First decompose

$$
U^{\dagger} \partial_{i} U=\frac{i}{2} \sum_{a=1}^{3} \xi_{i}^{a} \tau_{a}
$$

where τ_{a} are Pauli matrices. You should obtain that $\varepsilon^{i j k} \operatorname{Tr}\left[\left(U^{\dagger} \partial_{i} U\right)\left(U^{\dagger} \partial_{j} U\right)\left(U^{\dagger} \partial_{k} U\right)\right] \sim$ $\operatorname{det}(\xi)$.
Due to the symmetry of U, elements of matrix ξ can be decomposed in the following way:

$$
\xi_{i}^{a}=A \delta_{i a}+B n_{i} n_{a}+C \varepsilon_{i a k} n_{k}
$$

Express $\operatorname{det}(\xi)$ in terms of A, B and C.You should get an answer, which is proportional to $\left(A^{2}+C^{2}\right)(A+B)$.
In the last step calculate A, B and C. To this end expand U using de'Moivre (or Euler) formula for the exponent. For this you have to prove that $(\vec{n} \cdot \vec{\tau})^{2}=1$.
In order to differentiate U it is useful to use the following identities (prove them!)

$$
\begin{aligned}
\partial_{i} r & =n_{i} \\
\partial_{i} r_{k} & =\frac{1}{r}\left(\delta_{i k}-n_{i} n_{k}\right)
\end{aligned}
$$

2. Calculade the field tensor $F_{\mu \nu}$ for the pure gauge $A_{\mu}=-\frac{i}{g} U \partial_{\mu} U^{\dagger}$.
3. Prove that

$$
\int_{-T / 2}^{T / 2} d \tau_{1} \int_{\tau_{1}}^{T / 2} d \tau_{2} \ldots \int_{\tau_{n-1}}^{T / 2} d \tau_{n}=\frac{1}{n!} T^{n}
$$

