## QCD

problem set 6

1. What is the pole structure of the scalar propgator

$$
\frac{i}{\left(1+i 0^{+}\right) k_{0}^{2}-\left(1-i 0^{+}\right)\left(\boldsymbol{k}^{2}+m^{2}\right)}
$$

compared to

$$
\frac{1}{k^{2}-m^{2}+i 0^{+}} .
$$

2. Consider Gaussian integral

$$
J(\mathcal{M})=\int d^{N} \xi d^{N} \psi \exp \left(\psi_{i} \mathcal{M}_{i j} \xi_{j}\right)
$$

where $\psi_{i}$ and $\xi_{i}(i=1,2, \ldots N)$ are independent Grassmann variables. Expanding in a power series and commuting $\xi$ 's and $\psi$ 's show that

$$
J(\mathcal{M})=\operatorname{det}(\mathcal{M})
$$

3. Show that in electrodynamics one can write

$$
-\frac{1}{4} \int d^{4} x F^{\mu \nu} F_{\mu \nu}=\frac{1}{2} \int d^{4} x A^{\mu}\left(g_{\mu \nu} \square-\partial_{\mu} \partial_{\nu}\right) A^{\nu}
$$

Transform this expression to the momentum space.
4. Generating functional for electrodynamics in a covariant gauge is defined as:

$$
\begin{aligned}
Z_{0}\left[j^{\mu}\right]= & \int[D \omega(x)] \int\left[D A^{\mu}(x)\right] \exp \left(-i \frac{\xi}{2} \int d^{4} x \omega^{2}\right) \\
& \times \delta\left(\partial_{\mu} A^{\mu}-\omega\right) \exp \left(i \int d^{4} x\left(-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+j_{\mu} A^{\mu}\right)\right),
\end{aligned}
$$

where $\omega, A^{\mu}$ and $F^{\mu \nu}$ are functions of $x$. Show that it is equal to

$$
Z_{0}\left[j^{\mu}\right]=\int\left[D A^{\mu}(x)\right] \exp \left(i \int d^{4} x\left(\frac{1}{2} A^{\mu}\left(g_{\mu \nu} \square-(1-\xi) \partial_{\mu} \partial_{\nu}\right) A^{\nu}+j_{\mu} A^{\mu}\right)\right.
$$

5. Invert matrix

$$
g_{\mu \nu} k^{2}-(1-\xi) k_{\mu} k_{\nu}
$$

