QCD

problem set 5

1. Check that parton distribution parametrization given in the paper Glück, Reya (linked to the web page) in Eq.(A.1) are properly normalized (quark number, momentum). In Eq. (A.2) the authors include Q^{2} dependence. Check normalization for a few values of Q^{2} in the range $2 \div 250 \mathrm{GeV}^{2}$. Plot these functions for two values of Q^{2}, one low and one high (all calculations in Mathematica).
2. For the Altarelli-Parisi probabilities defined in lecture notes calculate Mellin moments:

$$
\int_{0}^{1} d z z^{n-1} P_{a b}(z)=\gamma_{a b}^{(n)}
$$

3. Use Mathematica to calculate traces:

$$
\operatorname{Tr}\left[P \gamma_{\lambda} \gamma_{5} P \gamma_{\nu} P \gamma_{\mu}\right], \operatorname{Tr}\left[P \gamma_{5} \gamma_{\nu}(P-\not \subset) \gamma_{\mu}\right]
$$

4. Hopf integral.

Calculate Hopf integral

$$
I=\int_{-\infty}^{+\infty} d x e^{i a x^{2}}, a>0
$$

as a contour integral over the complex plane. Choose the contour in such a way that the integral $\int d t e^{-b t^{2}}$ with positive b and real t appears. When the contribution of the large circle can be neglected? Is the phase of the result unique?
5. In quantum mechanics plane waves are defined as

$$
\begin{equation*}
u_{p}(x)=\langle x \mid p\rangle=\frac{1}{\sqrt{2 \pi \hbar}} e^{\frac{i}{\hbar} p x} . \tag{1}
\end{equation*}
$$

Note that the sign is dictated by thenomentum eigenvalue equation

$$
\begin{equation*}
-i \hbar \frac{d}{d x} u_{p}(x)=p u_{p}(x) \tag{2}
\end{equation*}
$$

and the normalization factor is chosen such that

$$
\begin{equation*}
\int d x u_{p^{\prime}}^{*}(x) u_{p}(x)=\delta\left(p-p^{\prime}\right) \tag{3}
\end{equation*}
$$

Calculate the following matrix element

$$
\begin{equation*}
\langle x| \exp \left(\frac{i}{\hbar} \frac{\hat{p}^{2}}{2 m} \epsilon\right) \exp (V(\hat{x}) \epsilon)|y\rangle \tag{4}
\end{equation*}
$$

where ϵ is a short time laps. HINT: Insert identity operator in momentum space expressed as

$$
1=\int \frac{d p}{2 \pi}|p\rangle\langle p| .
$$

