
Appendix B

The Relation between
Minkowski and Euclidean
Actions

The Minkowski action leads to canonical quantization and it is used to
calculate matrix elements of the evolution operator e−iHt. The Euclidean
action is used to calculate the partition function tre−βH . Lattice calcula-
tions are formulated in terms of the Euclidean action. In Minkowski space
gµν = (1,−1,−1,−1) and det g = −1, whereas in Euclidean space gµν =
(1, 1, 1, 1) = δµν and det g = +1. As a rule of the thumb, a Euclidean action
can be transformed into a Minkowski action by the following substitutions:

Euclidean → Minkowski
gµν = diag (1, 1, 1, 1) = δµν → gµν = diag (1,−1,−1,−1)

(t, �r) → (it, �r)
(∂t, ∂i) = (∂t,∇i) → (−i∂t, ∂i) = (−i∂t,−∇i)

(A0, Ai) → (iA0, Ai)(
j0,�j

)
→

(
ij0,�j

)

AµAµ → −AµAµ

∂2 = ∂2
0 + ∂2

i = ∂2
t + ∂2

i → −∂2 = −∂µ∂
µ

(∂ ∧ A)0i = ∂0Ai − ∂iA0 → −i (∂ ∧ A)0i = −i (∂0Ai − ∂iA0)
(∂ ∧ A)ij = ∂iAj − ∂jAi → − (∂ ∧ A)ij = −∂iAj + ∂jAi

1
4 (∂ ∧ A)2

µν → 1
4 (∂ ∧ A)µν (∂ ∧ A)µν

εµναβ = εµναβ → εµναβ = −εµναβ

ε0123 = ε0123 = 1 → ε0123 = −ε0123 = 1
∂ ∧ A0i = 1

2ε0ijk (∂ ∧ A)jk → −1
2ε

0ijk (∂ ∧ A)jk = −∂ ∧ A
0i
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Euclidean → Minkowski
∂ ∧ Aij = εij0k (∂ ∧ A)0k → i∂ ∧ A

ij
= iεij0k (∂ ∧ A)0k

1
4∂ ∧ Aµν∂ ∧ Aµν → −1

4∂ ∧ Aµν∂ ∧ A
µν

∫
d4x =

∫
dtdxdydz → ∫

d4x =
∫
dtdxdydz

(action) → − (action)
�E → −i �E
�H → �H

(B.1)

For example, the Minkowski Landau-Ginzburg action (3.8) of a dual super-
conductor is:

Ij (B, S, ϕ) =

∫
d4x

(
−1

2
(
∂ ∧B + Ḡ

)2 +
g2S2

2
(B + ∂ϕ)2 +

1
2

(∂S)2 − 1
2
b
(
S2 − v2)2

)

(B.2)

whereas the Euclidean action is:

Ij (B, S, ϕ) =

∫
d4x

(
1
2
(
∂ ∧B + Ḡ

)2 +
g2S2

2
(B − ∂ϕ)2 +

1
2

(∂S)2 +
1
2
b
(
S2 − v2)2

)

(B.3)

The table (B.1) can be used to recover the Minkowski action (B.2) from the
Euclidean action (B.3). The change in sign of the action is chosen such that
the partition function can be written in terms of a functional integral of the
Euclidean action, in the form:

Z = e−βH =
∫
D (B, S, ϕ) e−Ij(B,S,ϕ) (B.4)

In general however, the functional integrals need to be adapted to the acting
constraints..

We can choose to represent the Euclidean field tensor F µν = Fµν in terms
of Euclidean electric and magnetic fields �E and �H thus:

F µν =




0 −Ex −Ey −Ez

Ex 0 −Hz Hy

Ey Hz 0 −Hx

Ez −Hy Hx 0






B. The Relation between Minkowski and Euclidean Actions 127

F µν =
1
2
εµναβFαβ =




0 −Hx −Hy −Hz

Hx 0 Ez −Ey

Hy −Ez 0 Ex

Hz Ey −Ex 0


 (B.5)

If we want to express the Euclidean field tensor as F = ∂ ∧ A then
the relation between the Euclidean and Minkowski electric and magnetic
fields is the one given at the end of table B.1.The Euclidean electric and
magnetic fields �E and �H are expressed in terms of the Euclidean gauge
potential Aµ =

(
φ, �A

)
as follows:

�E = −∂t
�A+ �∇φ �H = −�∇ × �A (B.6)

In the Euclidean formulation, ε2 = G and the duality transformation of
antisymmetric tensors is reversible without a change in sign:

S̄µν =
1
2
εµναβSαβ Sµν =

1
2
εµναβS̄αβ (B.7)

The projectors K and E are defined by (A.42) with gµν = δµν and we have:

K2 = K = εKε E2 = E KE = 0 K + E = G (B.8)

with:

Gµν,αβ = (δµαδνβ − δµβδνα) (B.9)


