
Renormalization in QCD

M.Praszalowicz

February 23, 2020

1 Fermion self-energy

Figure 1: Feynman diagram corresponding to the quark self-energy.

We shall calculate diagram in Fig. 1 and using this example discuss renormalization
in QCD. We have (in Feynman gauge)

Σ(p) = −g2µ4−dCF δαβ

∫
ddk

(2π)d
γµ( /p+ /k +m)γµ

[(p+ k)2 −m2] k2
(1)

where we have anticipated that in order to regularize the integral in (1) we have to change
the dimensionality of the integral

4→ d = 4− 2ε (2)

where ε → 0+. The method of changing dimensionality of space-time, known as dimen-
sional regularization proposed by Veltman and ’t Hooft, has great advantage over some
other regularization methods, namely it preserves gauge invariance. It becomes problem-
atic in theories that involve γ5 Dirac matrix in the interaction vertex, as in the case of
weak interactions.
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In the following we shall put m = 0, which creates a problem in the infrared that we
will discuss later. Recall that

{γµ, γν} = 2gµν . (3)

Therefore

γµ( /p+ /k)γµ = gµνγ
µγτγν(p+ k)τ

= gµνγ
µ (2gτν − γνγτ ) (p+ k)τ

= 2( /p+ /k)− d( /p+ /k)

= −2(1− ε)( /p+ /k), (4)

where we have used
gµνg

µν = d. (5)

Hence

Σ(p) = 2(1− ε) g2µ2εCF δαβ

∫
ddk

(2π)d
/p+ /k

(p+ k)2 k2

= 2(1− ε) g2µ2εCF δαβ
[
/pI + γµI

µ
]
. (6)

We have to calculate two integrals

{I, Iµ} =

∫
ddk

(2π)d
1

(p+ k)2 k2
{1, kµ} . (7)

We shall introduce now Feynman parametrization for the propagators in (7):

1

(p+ k)2 k2
=

1∫
0

dx
1

(k2 + 2x p · k + x p2)2

=

1∫
0

dx
1

((k2 + 2x p · k + x2p2) + x(1− x) p2)2 . (8)

Changing variables
kµ → kµ + xpµ (9)

and introducing
M2 = −x(1− x) p2 (10)

we arrive at:

{I, Iµ} =

1∫
0

dx

∫
ddk

(2π)d
1

( k2 −M2)2 {1, k
µ − xpµ} . (11)
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Figure 2: Integration contour over k0. Black dots denote poles of Feynman propagators.

In order to calculate the integral over ddk,which is the integral in Minkowski space,
we observe that: 

∞∫
−∞

+

∫
CR

+

−i∞∫
+i∞

 dk0 = 0. (12)

Since the integral over CR vanishes

∞∫
−∞

dk0 = −
−i∞∫
+i∞

dk0 = i

+∞∫
−∞

dE (13)

where k0 = iE. Therefore the integral over ddk in Minkowski space transforms into the
Euclidean integral

{I, Iµ} = i

1∫
0

dx

∫
dd~k

(2π)d
1(

−~k2 −M2
)2 {1, k

µ − xpµ} (14)

where
~k = (E, k1, k2, . . . , kd−1). (15)

1.1 Integrals in d dimensions

In order to calculate integrals (14) we shall introduce spherical coordinates in d dimen-
sions. First we chose arbitrarily a d-th axis (equivalent of the z axis in three dimensions)
and project on it ~k vector with cos θd−1. Therefore a projection on the d− 1 dimensional
subspace orthogonal do the d-th axis is k sin θd−1. Now we choose an axis in this d − 1
dimensional subspace, the d−1 axis, and project on this axis this projection with cos θd−2.
Next, a projection on the the d−2 dimensional subspace orthogonal do the d-th and d−1
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axes involves sin θd−2. We continue this procedure until we "run out of dimensions" with
the result:

kd = k cos θd−1,

kd−1 = k sin θd−1 cos θd−2,

. . .

k2 = k sin θd−1 sin θd−2 . . . cos θ1,

k1 = k sin θd−1 sin θd−2 . . . sin θ1, (16)

where θ1 ∈ (0, 2π), θi>1 ∈ (0, π) and

∫
dΩd =

∫ d−1∏
i=1

(
sini−1 θidθi

)
= 2

d−1∏
i=1

 π∫
0

sini−1 θidθi

 . (17)

If the integral depends only on k2 we can perform angular integral with the help of the
following formula

π∫
0

sinn θ dθ = B

(
1 + n

2
,
1

2

)
(18)

and the result reads ∫
dΩd =

2πd/2

Γ(d/2)
. (19)

Let’s check. In two dimensions d = 2∫
dΩ2 =

2π

Γ(1)
= 2π (20)

is the length of a circle of radius r = 1. In d = 3∫
dΩ3 =

2π3/2

Γ(3/2)
. (21)

Now
Γ(1/2) =

√
π, Γ(3/2) =

1

2
Γ(1/2) =

√
π

2
(22)

and ∫
dΩ3 = 4π, (23)

etc. Since we are working in d = 4− 2ε dimensions∫
dΩd =

2π2−ε

Γ(2− ε)
. (24)
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1.2 Continuation

Angular integration nullifies kµ and we arrive at1

{I, Iµ} =
i

Γ(2− ε)
2π2−ε

(2π)4−2ε

1∫
0

dx {1,−xpµ}
∞∫
0

dk
kd−1

( k2 +M2)2

=
i

Γ(2− ε)
(4π)ε

23π2

1∫
0

dx {1,−xpµ}Md−4

∞∫
0

d

(
k

M

)
(k/M)d−1

( 1 + (k/M)2)2

=
i

Γ(2− ε)
1

23π2

(
4π

−p2

)ε 1∫
0

dx [x(1− x)]−ε {1,−xpµ}
∞∫
0

dr
rd−1

(1 + r2)2
, (25)

where r = k/M. Introducing

t = r2, dt = 2rdr → dr =
1

2
dt t−1/2 (26)

we arrive at

{I, Iµ} =
i

Γ(2− ε)
1

24π2

(
4π

−p2

)ε 1∫
0

dx [x(1− x)]−ε {1,−xpµ}
∞∫
0

dt
t1−ε

(1 + t)2
. (27)

Two integrals over x and t are easy to calculate with the help of the following formulae:

∞∫
0

dt
tx−1

(1 + t)x+y
= B(x, y),

1∫
0

dx xα−1(1− x)β−1 = B(α, β). (28)

In our case x = 2 − ε, y = ε and β = 1 − ε and α = 1 − ε or α = 2 − ε for I and Iµ

respectively. Hence

{I, Iµ} =
i

Γ(2− ε)
1

24π2

(
4π

−p2

)ε {
B(1− ε, 1− ε),−pµB(2− ε, 1− ε)

}
B(2− ε, ε)

= i
1

24π2

(
4π

−p2

)ε{
Γ(1− ε)
Γ(2− 2ε)

,−pµ Γ(2− ε)
Γ(3− 2ε)

}
Γ(1− ε)Γ(ε)

Γ(2)
. (29)

1At the lecture we have split integration into an integral over dE and an integral over d−1 dimensional
Euclidean space. Here we combine these two integrals into one integral over d dimensional Euclidean
space.
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1.3 Expanding Γ functions

Basic formulae:

zΓ(z) = Γ(z + 1), (30)
Γ(1/2) =

√
π. (31)

and
Γ(1− ε) = exp

(
γε+

π2

12
ε2 + . . .

)
(32)

where γ is Euler constant. In the present calculation we work with accuracyO(ε).Therefore

Γ(1− ε)
Γ(2− 2ε)

=
Γ(1− ε)

(1− 2ε) Γ(1− 2ε)
' (1 + 2ε)e−γε, (33)

Γ(2− ε)
Γ(3− 2ε)

=
(1− ε)Γ(1− ε)

2(1− ε) (1− 2ε) Γ(1− 2ε)
' 1

2
(1 + 2ε)e−γε, (34)

Γ(1− ε)Γ(ε)

Γ(2)
= Γ(1− ε)Γ(1 + ε)

ε
' 1

ε
. (35)

1.4 Continuation

We have
{I, Iµ} = i

1

24π2

(
4πe−γ

−p2

)ε{
1,−1

2
pµ
}

(1 + 2ε)
1

ε
(36)

and

Σ(p) = (1− ε) g2µ2εCF δαβ i
1

24π2

(
4πe−γ

−p2

)ε
/p (1 + 2ε)

1

ε

= i /pCF δαβ
αs
4π

(
µ24πe−γ

−p2

)ε(
1

ε
+ 1

)
(37)

where
αs =

g2

4π
. (38)

Now the full propagator for a massless fermion reads (skipping color δαβ)

SF (p) =
i

/p
+
i

/p
Σ(p)

i

/p
=
i

/p

(
1− αs

4π
CF

(
µ24πe−γ

−p2

)ε(
1

ε
+ 1

))
. (39)

At this point it is convenient to redefine the mass parameter entering (1) and (39):

µ̄2 = µ24πe−γ. (40)
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In practical terms renormalization proceeds by subtracting the infinity, in our case
1/ε pole, plus some finite parts. The minimal subtraction scheme (MS-bar) consits in
subtracting the pole from (39): 2

SRF (p) =
i

/p

(
1− αs

4π
CF

(
µ̄2

−p2

)ε(
1

ε
+ 1

)
+
αs
4π
CF

1

ε

)
=

i

/p

(
1− αs

4π
CF exp

[
ε ln

(
µ̄2

−p2

)](
1

ε
+ 1

)
+
αs
4π
CF

1

ε

)
=

i

/p

(
1 +

αs
4π
CF

(
ln

(
−p2

µ̄2

)
− 1

))
. (41)

We see that renormalized propagator is finite for p2 6= 0. For p2 = 0 there is a logarithmic
divergence, which is due to our approximation m = 0. Since this is an infrared divergence
(more precisely a collinear one), we can regularize it by changing the dimension to d =
4 + 2κ, which effectively means that we replace ε→ −κ and set p2 = 0:

SRF (p) =
i

/p

(
1− αs

4π
CF

(
−p2

µ̄2

)κ(
−1

κ
+ 1

)
− αs

4π
CF

1

κ

)
=
p2=0

i

/p

(
1− αs

4π
CF

1

κ

)
. (42)

We see that the subtracted UV divergence is the only piece that survives in this limit. The
pole 1/κ will be cancelled when we calculate full physical process including real emissions
of gluons (photons) that are parallel to the quark line.

2 Renormalization
Let’s observe that formal subtraction of the pole in (41) can be achieved by multiplication

Z2S
R
F = SF (43)

where
Z2 = 1− αs

4π
CF

1

ε
+O(α2

s). (44)

Here Z2 and SF are infinite for ε→ 0, while SRF is finite. Indeed, up to the first order in
αs we have

SRF =
i

/p

(
1 +

αs
4π
CF

1

ε

)(
1− αs

4π
CF

(
1

ε
− ln

(
−p2

µ̄2

)
+ 1

))
=

i

/p

(
1 +

αs
4π
CF

(
ln

(
−p2

µ̄2

)
− 1

))
. (45)

2By redefinition of µ2 we in fact subtract also ln(4πe−γ)
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Note that
1

Z2

' 1 +
αs
4π
CF

1

ε
. (46)

On the other hand we know that fermion propagator is defined as (in configuration
space)

SF (x− y) =
〈
0
∣∣T (ψ(x)ψ̄(y))

∣∣ 0〉 (47)

where T denotes time ordering. This suggests that in order to renormalize QCD (or QED)
we have to redefine fermion fields by by factors

√
Z2. This is indeed how renormalization

is practically done (and proven).
Let us start from the QCD lagrangian in d = 4− 2ε dimensions where all parameters

of the theory and fields are finite, but will eventually diverge when we take ε→ 0. Such
fields and parameters are called bare and will be denoted with a sub/superscript (0). The
QCD lagrangian reads

L = ψ̄(0)

(
i /D −m(0)

)
ψ(0) −

1

4
F aµν

(0) F a
(0)µν + . . . (48)

where dots denote gauge fixing terms, ghost field lagrangian, etc. Recall that

Dµψ(0) =
(
∂µ + ig(0)T

aAa(0)
µ

)
,

F aµν
(0) = ∂µA

a(0)
ν − ∂νAa(0)

µ − g(0) f
abcAb(0)

µ Ac(0)
ν . (49)

Note that bare field lagrangian (48) leads to the canonical commutation rules.

Figure 3: Feynman diagrams corresponding to the gluon self-energy: fermion loop, gluon
loop and ghost loop.

Now we define renormalized fields ψ, Aaµ that are finite in the limit ε→ 0:√
Z2ψ = ψ(0),

√
Z3A

a
µ = Aa(0)

µ , etc. (50)

Here Z3 can be calculated from gluon self-energy depicted in Fig. 3:

Z3 = 1− αs
4π

(
2

3
nf −

5

3
CA

)
1

ε
+ . . . . (51)

We see that Z3 contains a term proportional to the number of active fermions (nf ) that
comes from the first diagram and a term proportional to the Casimir of the adjoint
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representation of the gauge group (CA) corresponding to the second diagram in Fig. 4
and to the ghost contribution of the third diagram. Note that in QED CA = 0 and only
fermion loop contributes. In pure Yang-Mills theory (no fermions) nf = 0 and we have
only the contribution proportional to CA that changes the sign of the αs term. This
change of sign (still true for nf = 6) with respect to QED has dramatic consequences for
the UV behaviour of QCD. It is important to remember that renormalization constants Zi
are gauge dependent. For example in Landau gauge Z2 = 0. In Eq.(51) Z3 is in Feynman
gauge.

Unfortunately bare langrangian (48) expressed in terms of of the renormalized fields
has wrong normalization:

L = Z2ψ̄
(
i /∂ −m(0)

)
ψ − Z2

√
Z3g(0)ψ̄T

a /Aaψ

−Z3

4

(
∂µA

a
ν − ∂νAaµ

)2
+
Z

3/2
3 g(0)

2

(
∂µA

a
ν − ∂νAaµ

)
fabcAbµA

c
ν

−
Z2

3g
2
(0)

4

(
fabcAbµA

c
ν

)2
+ . . . (52)

Now we add to (52) so called counter terms, which are arranged to cancel UV divergences
term by term in perturbation theory. If we need only a finite number of such terms,
such theory is renormalizable. For clarity, let’s concentrate only on terms with massless
fermions:

LR = ψ̄i /∂ψ + (Z2 − 1)ψ̄i /∂ψ − gµεψ̄T a /Aaψ −
(
Z2

√
Z3g(0) − gµε

)
ψ̄T a /Aaψ + . . . . (53)

Note that, looking at (44), counter terms like Z2 − 1 contain essentially only poles in ε
and are of the order of g2. Secondly, we denote by g a finite renormalized coupling in
d = 4 dimensions, so we have multiplied it by a scale parameter µε like in (1).

Now, the perturbative calculation from Sect. 1 should be understood as an expansion
in renormalized coupling with new Feynman rules corresponding to the counter terms.
Z2 − 1 counter term is of the order of g2, and we require that another counter term
corresponding to the last term in (53) should be zero in the lowest order, as we want only
gauge interaction term (third term in (53)) between fermions and A fields to be present
in the lagrangian in the leading order. Since all renormalization constants Zi start with
unity, we have the following relation between bare and renormalized couplings up to first
order in g2:

g(0) = gµε

(
1 + g2 β̃

ε
+ . . .

)
(54)

where β̃ is to be calculated. Therefore in the lowest order in g (or g(0)) there is basically no
difference between the two. However already at the level of g2 (β̃ in Eq.(54)) we need to
include not only the contributions from the external lines (encoded in the counter terms
present in (53)), but also genuine vertex corrections depicted in Figs. 4 and 5. We see that
we can calculate quantum corrections to the gauge coupling either from the quark-gluon
vertex or from the 3g vertex. Needless to say that the result must be the same.
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Figure 4: Feynman diagrams corresponding to the corrections to the quark-gluon vertex.

Figure 5: Some of the Feynman diagrams corresponding to the corrections to the 3-gluon
vertex.

Loop corrections from diagrams of Fig. 4 or 5 yield poles in 1/ε and therefore we
need to add a new counter term to (53). There are no more counter terms required to
renormalize the coupling (there are some more for the mass, which we have set to zero in
this note) and the final result from all contributions gives the following relation between
the bare and renormalized couplings:

g(0) = gµε
(

1− αs
4π

(
11

6
CA −

1

3
nf

)
1

ε
+ . . .

)
. (55)

Note that this O(αs) result is gauge invariant (although higher order terms denoted here
by dots are not).

3 Renormalization group
When changing the number of dimensions to regularize UV divergent integrals we have
introduced an arbitrary parameter µ to take care of the dimensionality of the renormalized
coupling g. Unfortunately this parameter survives in the expressions for the renormalized
quantities (see e.g. Eq.(45)) and also in the final expressions for the observables. It seems
therefore that the renormalized theory has lost its predictive power, since by changing µ
we can get an arbitrary numerical value for a given observable. The only way to get out
of this trap is to require that the numerical values of renormalized parameters (coupling
g or mass m) change with µ to compensate explicit dependence of given observable on
µ. This makes the theory invariant under the change of µ and this invariance is called
renormalization group (RG) invariance.
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3.1 β function

This means that g = g(µ). On the other han the bare coupling g(0) (recall that we are
still in d = 4−2ε dimensions), which at first sight is a function of µ: g(0) = g(0)(µ, g(µ), ε)
should not depend on µ. This means that the full derivative of g(0) over µ (in practice we
will take derivative over lnµ2) should be zero:

0 =
d

d lnµ2
g(0)(µ, g(µ), ε) =

∂g(0)

∂ lnµ2
+
∂g(0)

∂g

dg(µ)

d lnµ2
. (56)

In order to calculate the first derivative in (56) let’s observe that

µε = exp

(
1

2
ε lnµ2

)
(57)

hence
d

d lnµ2
µε =

1

2
εµε (58)

and finally
dg(µ)

d lnµ2
= −1

2
ε

g(0)

∂g(0)/∂g
. (59)

This is the renormalization group equation for the renormalized coupling constant g(µ).
On the right hand side of (59) we need a pole part of g(0)

∂g(0)/∂g
only to get finite result in

the limit ε→ 0.
Customarily we work with g2 rather than with g. Let’s define

as(µ) =
g2(µ)

16π2
=
αs(µ)

4π
. (60)

We have
das(µ)

d lnµ2
=

2g(µ)

16π2

dg(µ)

d lnµ2
= − g(µ)

16π2
ε

g(0)

∂g(0)/∂g
=
ε=0

β(as). (61)

Let’s calculate β from (55) remembering (38):

β(as) = − g

16π2
ε
gµε

(
1− αs

4π

(
11
6
CA − 1

3
nf
)

1
ε

)
µε
(
1− 3αs

4π

(
11
6
CA − 1

3
nf
)

1
ε

)
= −asε

(
1− 3αs

4π

(
11
6
CA − 1

3
nf
)

1
ε

)
+ 2αs

4π

(
11
6
CA − 1

3
nf
)

1
ε

1− 3αs

4π

(
11
6
CA − 1

3
nf
)

1
ε

= −asε− a2
s

(
11

3
CA −

2

3
nf

)
+ . . .

=
ε=0

−a2
s

(
11

3
CA −

2

3
nf

)
+ . . . . (62)

In order to arrive at the last line of (62) we have neglected a3
s and higher terms. For

higher orders we need to compute two loop diagrams, so (62) is a one loop expression for
the so called beta function of QCD.
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3.2 Solving RG equation for the gauge coupling

In the last subsection we have derived the renormalization group equation for the gauge
coupling

das
d lnµ2

= β(as) (63)

where β function has power series expansion

β(as) = −β0a
2
s − β1a

3
s + . . . (64)

For β0 we have obtained an explicit form

β0 =
11

3
CA −

2

3
nf (65)

which is positive for nf < 16. This is the case of QCD where nf = 6. The values of the
coefficients up to β3 can be found in the book of John Collins for example.

Equation (63) can be solved by integrating both sides over the interval (µ0, µ):

ln
µ2

µ2
0

=

as(µ)∫
as(µ0)

dαs
β(αs)

. (66)

In one loop approximation we have

as(µ)∫
as(µ0)

dαs
β(αs)

=
1

β0

(
1

as(µ)
− 1

as(µ0)

)
. (67)

We can therefore rewrite (66) as

1

as(µ)
− β0 lnµ2 =

1

as(µ0)
− β0 lnµ2

0 = −β0 ln Λ2
QCD (68)

where in the last step the unknown value of the gauge coupling g(µ0) (i.e. as(µ0)) has
been replaced by a logarithm of a dimensional constant denoted by ΛQCD. This constant
(or the QCD charge g) cannot be calculated and has to be measured. In QCD it is equal
to 150 – 200 MeV (this depends what order of perturbative expansion we are working at).
The asymptotic value (we work in perturbative expansion assuming that g is small) reads
therefore:

as(µ) =
1

β0 ln µ2

Λ2
QCD

. (69)

For µ → ∞ we have that as(µ) → 0. So in this limit the interaction vanishes and the
theory is asymptotically free.
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Alternatively, we can rewrite solution (68) in a way that relates the coupling at one
scale to the coupling at another scale:

as(µ) =
as(µ0)

1 + β0as(µ0) ln(µ2/µ2
0)
. (70)

For positive β0, which is the case of QCD, as(µ → ∞) → 0, however for negative β0,
which is the case of QED, the coupling develops a pole at some µ, so called Landau pole.
The coupling is growing with µ until it reaches a pole. This effect is, however, very small
at typical momentum transfers characteristic for atomic or experimental particle physics.

4 Final remarks
Even though we have started from the theory with no mass scale (for massless fermions),
after renormalization we ended up with a theory with a mass scale: ΛQCD. This phe-
nomenon is called dimensional transmutation and is independent of the way we regularize
the theory (one might suspect that it is due to the way we corrected dimensionality of
the gauge coupling). The dependence of g and also other parameters of the theory like
masses on the scale parameter µ2 leads to the concept of running coupling constant (run-
ning mass). In a typical QCD calculation we can choose µ2 at will, and a typical choice
is that µ2 corresponds to the large momentum transfer present in a given process. See for
example Eq. (45)

SRF =
i

/p

(
1 +

α(µ2)

4π
CF

(
ln

(
−p2

µ̄2

)
− 1

))
(71)

where the choice of µ̄2 ∼ −p2 (provided −p2 � Λ2
QCD) nullifies potentially large logarithm.

Obviously SRF is not an observable, however the above reasoning applies to the measurable
quantities like cross-sections or decay widths.

One might be worried that the change of scale in (71) changes the numerical value of
the quark propagator in plain contradiction with the RG invariance. One should, how-
ever, keep in mind that RG invariance concerns full theory and (71) is only a one loop
approximation. Today when two, three or even four loop calculations for different observ-
ables are available, one can convince onself that increasing the accuracy of perturbative
calculations reduces sensitivity to the choice of scale.

While asymptotic freedom is a welcome feature that justifies the use of perturbative
expansion in QCD, the growth of the coupling constant for small momenta µ2 . Λ2

QCD
invalidates the use of perturbative expansion in this kinematical range, and is a clear
signal of another important feature of QCD, namely confinement. Roughly speaking
confinement corresponds to the fact that no free quarks have been ever observed. The
interaction strength between two color sources increases with distance, so that finally
either the sources have to bounce back or the quark antiquark pair is created from the
vacuum. While the growth of the coupling constant for small momentum transfers (large
distances by the uncertainty principle) is an important hint of the confinement, until now
there exits no non-perturbative proof of confinement in QCD.
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