QCD

Problem set \#11
Monday, January 20, 10:00

1. Real scalar field lagrangian density reads as follows:

$$
\mathcal{L}(x)=\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x)-\frac{1}{2} m^{2} \phi^{2}(x) .
$$

Calculate Hamiltonian. Canonical equal-time quantization rules for real scalar field operators read:

$$
\left[\hat{\phi}(t, \vec{x}), \hat{\pi}\left(t, \vec{x}^{\prime}\right)\right]=i \delta^{(3)}\left(\vec{x}-\vec{x}^{\prime}\right)
$$

and all other possible commutators are zero. Using decomposition

$$
\hat{\phi}(t, \vec{x})=\int \frac{d^{3} \vec{k}}{(2 \pi)^{2} \sqrt{2 \omega_{k}}}\left[e^{-i k x} \hat{a}(\vec{k})+e^{+i k x} \hat{a}^{\dagger}(\vec{k})\right]
$$

show that the canonical quatization rules are satisfied if

$$
\left[\hat{a}(\vec{k}), \hat{a}^{\dagger}\left(\vec{k}^{\prime}\right)\right]=(2 \pi)^{3} \delta^{(3)}\left(\vec{k}-\vec{k}^{\prime}\right)
$$

and the remaining two commutators vanish.
2. Nonlinear realization of the $\mathrm{QCD} \mathrm{SU}_{\mathrm{R}}(N) \times \mathrm{SU}_{\mathrm{L}}(N)$ symmetry is implemented by the following transformation:

$$
U(x) \rightarrow L U(x) R^{\dagger}
$$

where

$$
L, R=e^{-i \theta_{a}^{L, R} T^{a}}
$$

where $U(x)$ is expressed in terms of the physical fields

$$
U=\exp \left(\frac{2 i}{F} T^{a} \phi^{a}(x)\right)
$$

and T^{a} are generators of the $\mathrm{SU}(N)$ group, and F is a dimensionfull constant. The simplest possible lagrangian of this effective theory takes the following form:

$$
\begin{equation*}
\mathcal{L}_{\text {eff }}=\frac{F^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right) \tag{1}
\end{equation*}
$$

For the $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ case calculate the chiral effective lagrangian (1) up to 4 -field interaction. What is the dimension of F ?
3. Use Nother construction to calculate currents associated with L and R transformations. Expand currents up to the lowest possible order in the number of fields $\phi^{a}(x)$.
4. Add to (1) the symmetry breaking term

$$
\mathcal{L}_{M}=-\frac{F^{2} B}{2} \operatorname{Tr}\left(M\left(U+U^{\dagger}\right)\right)
$$

where $M=\operatorname{diag}\left(m, m, m_{s}\right)$. Calculate \mathcal{L}_{M} up to the lowest number of fields ϕ.Using

$$
\lambda_{a} \phi^{a}(x)=\left[\begin{array}{ccc}
\pi^{0} & \sqrt{2} \pi^{+} & \sqrt{2} K^{+} \\
\sqrt{2} \pi^{-} & -\pi^{0}+\frac{1}{\sqrt{3}} \eta^{0} & \sqrt{2} K^{0} \\
\sqrt{2} K^{-} & \sqrt{2} \bar{K}^{0} & -\frac{2}{\sqrt{3}} \eta^{0}
\end{array}\right]
$$

calculate

$$
\mathcal{L}_{\text {eff }}+\mathcal{L}_{M}
$$

in terms of the physical fields. Read out the masses of these fields. Since these three masses will be expressed in terms of two "free" parameters Bm and Bm , there exits one relation between these masses. Derive this relation and check its numerical accuracy.

