QCD

Problem set \#10
Monday, January 13, 10:00

1. Finish the calculation of the color factors, i.e. calculate so called Casimir operator

$$
\sum_{a, j} T_{i j}^{a} T_{j k}^{a}=C \delta_{i k}
$$

for the adjoint representations of the $\mathrm{SU}(N)$ group.
2. Real scalar field lagrangian density reads as follows:

$$
\mathcal{L}(x)=\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x)-\frac{1}{2} m^{2} \phi^{2}(x) .
$$

Calculate Hamiltonian. Canonical equal-time quantization rules for real scalar field operators read:

$$
\left[\hat{\phi}(t, \vec{x}), \hat{\pi}\left(t, \vec{x}^{\prime}\right)\right]=i \delta^{(3)}\left(\vec{x}-\vec{x}^{\prime}\right)
$$

and all other possible commutators are zero. Using decomposition

$$
\hat{\phi}(t, \vec{x})=\int \frac{d^{3} \vec{k}}{(2 \pi)^{2} \sqrt{2 \omega_{k}}}\left[e^{-i k x} \hat{a}(\vec{k})+e^{+i k x} \hat{a}^{\dagger}(\vec{k})\right]
$$

show that the canonical quatization rules are satisfied if

$$
\left[\hat{a}(\vec{k}), \hat{a}^{\dagger}\left(\vec{k}^{\prime}\right)\right]=(2 \pi)^{3} \delta^{(3)}\left(\vec{k}-\vec{k}^{\prime}\right)
$$

and the remaining two commutators vanish.
3. For a system of $\operatorname{SU}(3)$ scalar fields $\hat{\phi}_{i}(x)$ with $i=1,2,3$ that satisfy the following commutation rules

$$
\left[\hat{\phi}_{i}(t, \vec{x}), \hat{\pi}_{j}\left(t, \vec{x}^{\prime}\right)\right]=i \delta^{(3)}\left(\vec{x}-\vec{x}^{\prime}\right) \delta_{i j}
$$

one defines charge operators

$$
\hat{Q}^{a}(t)=-i \int d^{3} \vec{x} \hat{\pi}_{i}(t, \vec{x}) T_{i j}^{a} \hat{\phi}_{j}(t, \vec{x})
$$

where matrices T^{a} satisfy $\mathrm{SU}(3)$ commutation relations:

$$
\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c} .
$$

Prove that

$$
\left[\hat{Q}^{a}(t), \hat{Q}^{b}(t)\right]=i f^{a b c} \hat{Q}^{c}(t)
$$

4. In the case of fermion fields, commutation relations from problem 2 are replaced by anticommutation relations:

$$
\left\{q_{\alpha, k}(t, \vec{x}), q_{\beta, l}\left(t, \vec{x}^{\prime}\right)\right\}=\delta^{(3)}\left(\vec{x}-\vec{x}^{\prime}\right) \delta_{\alpha \beta} \delta_{k l}
$$

where α, β stand for Dirac indices and k, l denote $\mathrm{SU}(3)$ matrices. Relevant charges are defined as

$$
\begin{aligned}
\hat{Q}_{L, R}^{a}(t) & =\int d^{3} \vec{x} q_{L, R}^{\dagger}(t, \vec{x}) T^{a} q_{L, R}(t, \vec{x}), \\
\hat{Q}_{V}(t) & =\int d^{3} \vec{x}\left[q_{L}^{\dagger}(t, \vec{x}) q_{L}(t, \vec{x})+q_{R}^{\dagger}(t, \vec{x}) q_{R}(t, \vec{x})\right]
\end{aligned}
$$

where $T^{a}=\lambda^{a} / a$ are $\mathrm{SU}(3)$ generators (Gell-Mann matrices). Making use of the identity (prove it!)

$$
\{a b, c d\}=a\{b, c\} d-a c\{b, d\}+\{a, c\} b d-c\{a, d\} b
$$

show that

$$
\begin{aligned}
{\left[\hat{Q}_{L}^{a}, \hat{Q}_{L}^{b}\right] } & =i f^{a b c} \hat{Q}_{L}^{c} \\
{\left[\hat{Q}_{R}^{a}, \hat{Q}_{R}^{b}\right] } & =i f^{a b c} \hat{Q}_{R}^{c} \\
{\left[\hat{Q}_{L}^{a}, \hat{Q}_{R}^{b}\right] } & =0 \\
{\left[\hat{Q}_{L, R}^{a}, \hat{Q}_{V}^{b}\right] } & =0
\end{aligned}
$$

