QCD

Problem set \#9
Monday, December 16, 10:00, A-1-13

1. Choose $A_{0}=0$ gauge and calculate the action for the Yang-Mills $\operatorname{SU}(2)$ field in terms of electric and magnetic fields \vec{E} and \vec{B} where

$$
\begin{equation*}
E_{i}^{a}=\dot{A}_{i}^{a}, B_{i}^{a}=\frac{1}{2} \varepsilon_{i j k}\left(\partial_{j} A_{k}^{a}-\partial_{k} A_{j}^{a}+\varepsilon^{a b c} A_{j}^{b} A_{k}^{c}\right) . \tag{1}
\end{equation*}
$$

2. Suppose one would like to construct the quantum mechanical hamiltonian where instead of ordinary coordinates one would use A_{i}^{a} with the corresponding momenta operators given as

$$
-i \frac{\delta}{\delta A_{i}^{a}}
$$

What would be the corresponding hamiltonian and the corresponding potential?
3. Calculate coefficients A and B for the the following Fiertz decomposition of the $\mathrm{SU}(\mathrm{N})$ generators

$$
\begin{equation*}
T_{i j}^{a} T_{k l}^{a}=A \delta_{i j} \delta_{k l}+B \delta_{i l} \delta_{k j} . \tag{2}
\end{equation*}
$$

These operators are normalized as

$$
\begin{equation*}
\operatorname{Tr}\left(T^{a} T^{b}\right)=\frac{1}{2} \delta^{a b} \tag{3}
\end{equation*}
$$

Propose graphical illustration of these identities.
4. Calculate so called Casimir operators

$$
\begin{equation*}
\sum_{a, j} T_{i j}^{a} T_{j k}^{a}=C \delta_{i k} \tag{4}
\end{equation*}
$$

for the fundamental and adjoint representations of the $\mathrm{SU}(N)$ group.

