QCD

Problem set \#8
Monday, December 9, 10:00, A-1-13

1. Winding number of the gauge transformation U is defined as

$$
\begin{equation*}
N_{\mathrm{w}}=\frac{1}{24 \pi^{2}} \varepsilon^{i j k} \int d^{3} r \operatorname{Tr}\left[\left(U^{\dagger} \partial_{i} U\right)\left(U^{\dagger} \partial_{j} U\right)\left(U^{\dagger} \partial_{k} U\right)\right] \tag{1}
\end{equation*}
$$

Calculate (1) for $U=\exp (i \vec{n} \cdot \vec{\tau} \omega(r))$ where $\vec{n}=\vec{r} / r$. What are the boundary conditions for $\omega(r)$ that ensure that N_{w} is an integer.
2. Choose $A_{0}=0$ gauge and calculate the action for the Yang-Mills $\mathrm{SU}(2)$ field in terms of electric and magnetic fields \vec{E} and \vec{B} where

$$
\begin{equation*}
E_{i}^{a}=\dot{A}_{i}^{a}, B_{i}^{a}=\frac{1}{2} \varepsilon_{i j k}\left(\partial_{j} A_{k}^{a}-\partial_{k} A_{j}^{a}+\varepsilon^{a b c} A_{j}^{b} A_{k}^{c}\right) . \tag{2}
\end{equation*}
$$

3. Suppose one would like to construct the quantum mechanical hamiltonian where instead of ordinary coordinates one would use A_{i}^{a} with the corresponding momenta operators given as

$$
-i \frac{\delta}{\delta A_{i}^{a}}
$$

What would be the corresponding hamiltonian and the corresponding potential?
4. Calculate coefficients A and B for the the following Fiertz decomposition of the $\mathrm{SU}(\mathrm{N})$ generators

$$
\begin{equation*}
T_{i j}^{a} T_{k l}^{a}=A \delta_{i j} \delta_{k l}+B \delta_{i l} \delta_{k j} . \tag{3}
\end{equation*}
$$

