QCD

Problem set \#7
Monday, December 2, 10:00, A-1-13

1. Prove that

$$
\partial_{\mu} K^{\mu}=\frac{1}{2} \varepsilon^{\mu \nu \rho \sigma} F_{\mu \nu}^{a} F_{\rho \sigma}^{a}
$$

where

$$
K^{\mu}=\varepsilon^{\mu \nu \rho \sigma}\left(A_{\nu}^{a} F_{\rho \sigma}^{a}-\frac{g}{3} f^{a b c} A_{\nu}^{a} A_{\rho}^{b} A_{\sigma}^{c}\right) .
$$

2. Consider a complex scalar and/or fermion field theory coupled to the nonabelian gauge fields:

$$
\begin{aligned}
\mathcal{L}_{\phi} & =\left(D_{\mu} \phi(z)\right)^{\dagger}\left(D_{\mu} \phi(x)\right)-m^{2} \phi^{\dagger}(x) \phi(x)-V\left(\phi^{\dagger}(x) \phi(x)\right), \\
\mathcal{L}_{\psi} & =\bar{\psi}(x)\left(i D_{x}-m\right) \psi(x),
\end{aligned}
$$

with covariant derivative defined as

$$
D_{\mu}=\partial_{\mu}-i g A_{\mu}^{a}(x) T^{a}
$$

where T^{a} are generators of $\operatorname{SU}(N)$ group. Lagrangian for the gauge fields reads

$$
\mathcal{L}_{A}=-\frac{1}{4} F_{\mu \nu}^{a}(x) F^{a \mu \nu}(x)
$$

Derive by means of the variational approach equations of motion for (analogs of Maxwell equations) the scalar and fermion theory. Prove the identity

$$
\left[D_{\mu}, F^{\nu \rho}\right]+\left[D_{\nu}, F^{\rho \mu}\right]+\left[D_{\rho}, F^{\mu \nu}\right]=0 .
$$

