QCD

Problem set \#5
Tuesday, November 18, 10:00, A-1-13
ANOMALY

Figure 1: Loop diagrams contributing to the decay of axial-vector current (dashed line) to two photons.

Consider the following loop contribution to the decay of axial-vector current to two photons (Fig. 1):

$$
\begin{align*}
T_{\mu \nu \lambda}= & -i \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\nu} \frac{i}{\left(\not p-\not k_{1}^{\prime}\right)-m} \gamma_{\mu}\right] \\
& -i \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-m} \gamma_{\lambda} \gamma_{5} \frac{i}{(p p-q)-m} \gamma_{\mu} \frac{i}{\left(p p^{\prime}-\not k_{2}\right)-m} \gamma_{\nu}\right] \tag{1}
\end{align*}
$$

where

$$
\begin{equation*}
q=k_{1}+k_{2} . \tag{2}
\end{equation*}
$$

Note that the second line in (1) and the first line are related by a replacement $\mu \longleftrightarrow \nu$ and $k_{1} \longleftrightarrow k_{2}$. We expect that vector currents are consrved

$$
\begin{equation*}
k_{1}^{\mu} T_{\mu \nu \lambda}=k_{2}^{\nu} T_{\mu \nu \lambda}=0 \tag{3}
\end{equation*}
$$

and that the axial current is conserved in a massless limit

$$
\begin{equation*}
q^{\lambda} T_{\mu \nu \lambda}=2 m T_{\mu \nu} . \tag{4}
\end{equation*}
$$

In fact on general grounds we expect $T_{\mu \nu}$ to be obtained from $T_{\mu \nu \lambda}$ by replacing $\gamma_{\lambda} \gamma_{5} \rightarrow$ γ_{5}. In the following, we will show that it is impossible to satisfy both conservation laws (4) and (3) (Ward identities) at one loop level.

1. Calculate (4) using the following substitution

$$
\begin{align*}
q \gamma_{5} & =-\gamma_{5} q \\
& =\gamma_{5}\left[\left(p p^{\prime}-q\right)-m\right]-\gamma_{5}\left[p p^{\prime}-m\right] \\
& =\gamma_{5}[(p-q)-m]+[p p-m] \gamma_{5}+2 m \gamma_{5} . \tag{5}
\end{align*}
$$

The result should read

$$
\begin{equation*}
q^{\lambda} T_{\mu \nu \lambda}=2 m T_{\mu \nu}+\Delta_{\mu \nu}^{(1)}+\Delta_{\mu \nu}^{(2)} \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
\Delta_{\mu \nu}^{(1)} & =\int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{p p-m} \gamma_{5} \gamma_{\nu} \frac{i}{\left(p p-\not k_{1}^{\prime}\right)-m} \gamma_{\mu}-\frac{i}{\left(p p-\not k_{2}\right)-m} \gamma_{5} \gamma_{\nu} \frac{i}{(p p-q)-m} \gamma_{\mu}\right], \\
\Delta_{\mu \nu}^{(2)} & =\int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{p p-m} \gamma_{5} \gamma_{\mu} \frac{i}{\left(p p-\not \alpha_{2}\right)-m} \gamma_{\nu}-\frac{i}{\left(p p-\not p_{1}\right)-m} \gamma_{5} \gamma_{\mu} \frac{i}{(p-q)-m} \gamma_{\nu}\right] . \tag{7}
\end{align*}
$$

The question is: are $\Delta_{\mu \nu}^{(1,2)}$ equal zero?
2. Consider an integral that naively is equal to zero

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x[f(x+a)-f(x)] \tag{8}
\end{equation*}
$$

where f is a function that does not vanish at infinity:

$$
\begin{equation*}
f(\pm \infty) \neq 0 \tag{9}
\end{equation*}
$$

Calculate (8) expanding in a up to a^{2}. What happens when $f^{\prime}(\pm \infty)=0$. Generalize this result to the n-dimensional Euclidean integral

$$
\Delta(\vec{a})=\int d^{n} \vec{r}[f(\vec{r}+\vec{a})-f(\vec{r})] .
$$

Show that for the integral in Minkowski space the result reads

$$
\begin{equation*}
\Delta(a)=2 i \pi^{2} a^{\mu} \lim _{R \rightarrow \infty} R^{2} R_{\mu} f(R) \tag{10}
\end{equation*}
$$

Note that the surface of a sphere in 4 dimensions reads $2 \pi^{2} R^{3}$.
3. Calculate applying (10) the change of (1)

$$
\begin{equation*}
\Delta_{\mu \nu \lambda}(a)=T_{\mu \nu \lambda}(p \rightarrow p+a)-T_{\mu \nu \lambda} \tag{11}
\end{equation*}
$$

if the integration momentum p is shifted by a four-vector

$$
\begin{equation*}
a=\alpha k_{1}+(\alpha-\beta) k_{2} . \tag{12}
\end{equation*}
$$

The result should read:

$$
\begin{equation*}
\Delta_{\mu \nu \lambda}(a)=-\frac{1}{(2 \pi)^{4}} 2 i \pi^{2} a^{\sigma} \lim _{P \rightarrow \infty} P^{2} P_{\sigma} \operatorname{Tr}\left[P \gamma_{\lambda} \gamma_{5} P \gamma_{\nu} P \gamma_{\mu}\right] \frac{1}{P^{6}}+\left(\mu \longleftrightarrow \nu, k_{1} \leftrightarrow k_{2}\right) . \tag{13}
\end{equation*}
$$

Taking symmetric limit

$$
\begin{equation*}
\lim _{P \rightarrow \infty} \frac{P^{\sigma} P^{\alpha}}{P^{2}}=\frac{1}{4} g^{\sigma \alpha} \tag{14}
\end{equation*}
$$

and calculating the trace one should obtain

$$
\begin{equation*}
\Delta_{\mu \nu \lambda}(a)=\frac{\beta}{8 \pi^{2}} \varepsilon_{\alpha \mu \nu \lambda}\left(k_{1}-k_{2}\right)^{\alpha} \tag{15}
\end{equation*}
$$

4. Calculate $\Delta_{\mu \nu}^{(1,2)}$ using the same trick with shifting the integration varible. In this case, however, one has to observe that $p \rightarrow p-k_{2}$ for $\Delta_{\mu \nu}^{(1)}$. The result should read:

$$
\begin{equation*}
\Delta_{\mu \nu}^{(1)}=\Delta_{\mu \nu}^{(2)}=-\frac{1}{8 \pi^{2}} \varepsilon_{\mu \nu \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho} . \tag{16}
\end{equation*}
$$

Summing all terms show that

$$
\begin{align*}
q^{\lambda} T_{\mu \nu l}(\beta) & =q^{\lambda}\left(T_{\mu \nu l}(\beta)-T_{\mu \nu l}(0)\right)+q^{\lambda} T_{\mu \nu l}(0) \\
& =2 m T_{\mu \nu}-\frac{1-\beta}{4 \pi^{2}} \varepsilon_{\mu \nu \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho} \tag{17}
\end{align*}
$$

5. Apply the same procedure to calculate $k_{1}^{\mu} T_{\mu \nu l}(\beta)$ and show that

$$
\begin{equation*}
k_{1}^{\mu} T_{\mu \nu l}(\beta)=\frac{1+\beta}{8 \pi^{2}} \varepsilon_{\nu \lambda \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho} . \tag{18}
\end{equation*}
$$

We see that it is impossible to maintain both Ward identities (17) and (18) by a suitable choice of β. Because we know that vector current (charge) is conserved, we are forced to choose $\beta=-1$. Then

$$
\begin{equation*}
q^{\lambda} T_{\mu \nu l}=2 m T_{\mu \nu}-\frac{1}{2 \pi^{2}} \varepsilon_{\mu \nu \sigma \rho} k_{1}^{\sigma} k_{2}^{\rho} \tag{19}
\end{equation*}
$$

which means tht axial current is anomalous.

