QCD

Problem set \#4
Tuesday, November 5, 10:15, B-2-01

1. Finish last problem from set 3: Decompose W fields as

$$
\begin{aligned}
\boldsymbol{W}_{\mu}(x) & =\left[\begin{array}{cc}
W_{\mu}^{3} & W_{\mu}^{1}-i W_{\mu}^{2} \\
W_{\mu}^{1}+i W_{\mu}^{2} & -W_{\mu}^{3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
W_{\mu}^{3} & \sqrt{2} W_{\mu}^{+} \\
\sqrt{2} W_{\mu}^{-} & -W_{\mu}^{3}
\end{array}\right],
\end{aligned}
$$

and calculate the kinetic term

$$
-\frac{1}{8} \operatorname{Tr}\left(\boldsymbol{W}^{\mu \nu} \boldsymbol{W}_{\mu \nu}\right)
$$

in term of these new fields. Here

$$
\boldsymbol{W}_{\mu \nu}=D_{\mu}(W) \boldsymbol{W}_{\nu}-D_{\nu}(W) \boldsymbol{W}_{\mu} .
$$

2. Variables ψ_{i} and $\xi_{i}(i=1, N)$ are two sets of independent Grassmann variables.

Prove that

$$
J(M)=\int d^{N} \xi d^{N} \psi \exp \left(\psi_{i} M_{i j} \xi_{j}\right)=\operatorname{det}(M)
$$

where M is number-valued antisymmetric matrix.
3. Define complex Grassmann variables

$$
\chi=\frac{1}{\sqrt{2}}(\psi+i \xi), \bar{\chi}=\frac{1}{\sqrt{2}}(\psi-i \xi) .
$$

Show that

$$
d \xi d \psi=i d \chi d \bar{\chi}
$$

Calculate

$$
\int d \chi d \bar{\chi} \bar{\chi} \chi
$$

4. Show that for electrodynamics

$$
-\frac{1}{4} \int d^{4} x F^{\mu \nu} F_{\mu \nu}=-\frac{1}{2} \int d^{4} x \tilde{A}^{\mu}(k)\left(g_{\mu \nu} k^{2}-k_{\mu} k_{\nu}\right) \tilde{A}^{\nu}(-k)
$$

where a \tilde{A} is a Fourier transform of A.
5. Try to find an inverse of matrix

$$
g_{\mu \nu} k^{2}-k_{\mu} k_{\nu}
$$

solving for α and β the equation

$$
\left(g_{\mu \nu} k^{2}-k_{\mu} k_{\mu}\right)\left(\alpha g^{\nu \rho}+\beta \frac{k^{\nu} k^{\rho}}{k^{2}}\right)=\delta_{\mu}^{\rho}
$$

and show that there is no solution. Is it possible to invert matrix

$$
g_{\mu \nu} k^{2}-(1-\xi) k_{\mu} k_{\nu}
$$

where $\xi \neq 0$ is a real parameter?

