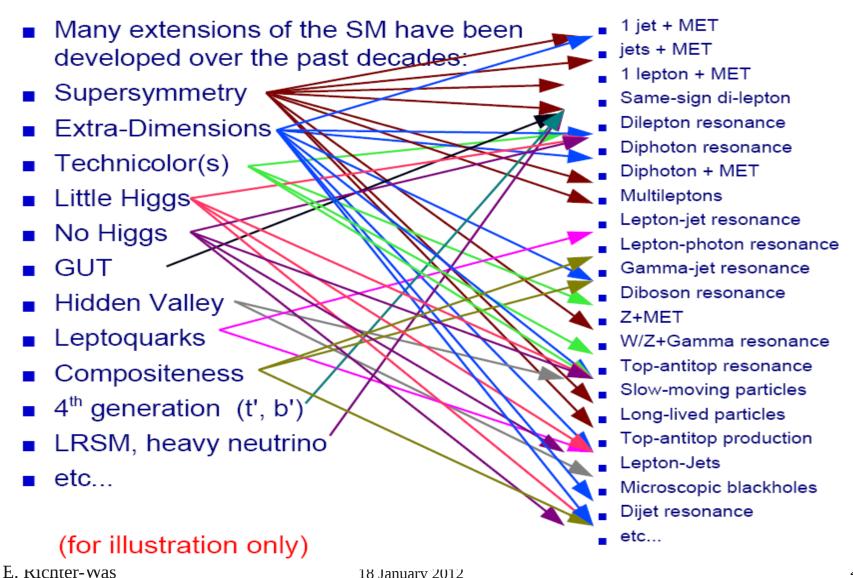
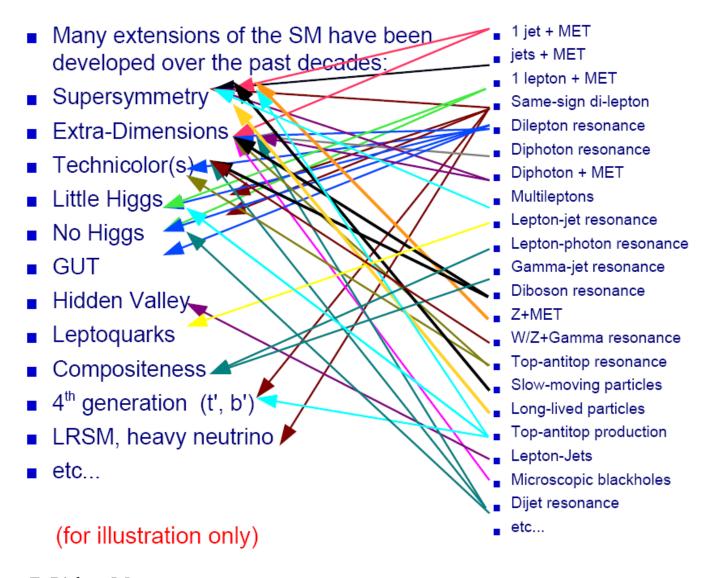
Physics with first fb⁻¹


at Large Hadron Collider

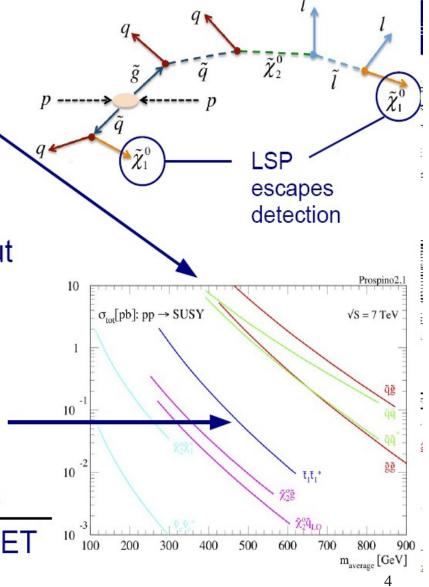
Today:


- Searches for New Physics
 - SUSY
 - Heavy resonances
 - Exotica

Long list of models and signatures

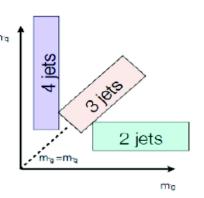
Long list of models and signatures

A complex 2D problem

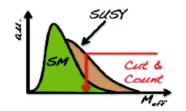

Experimentally, a signature standpoint makes a lot of sense:

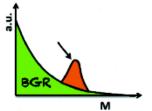
- → Practical
- → Less modeldependent
- → Important to cover every possible signature

Supersymmetry


Cascade ending with LSP

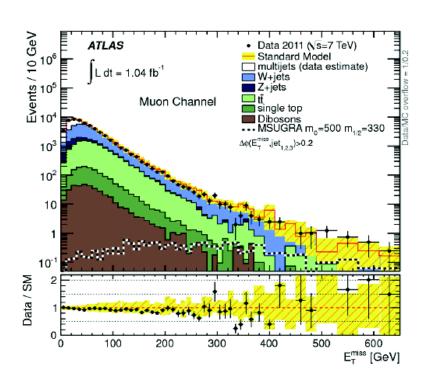
- → large MET
- 1 Jets+MET: Gluino and Squark prod. dominate
- 2 Leptons(+jets)+MET: lower branching ratio/cross-section but complementary
- 3 3rd generation (b or t)+MET:
 - → in cascade
 - → direct production requires > 1 fb⁻¹
 → coming soon
- 4 Photon(s)+MET: GMSB models
- 5 "Exotic" SUSY: long-lived, no MET



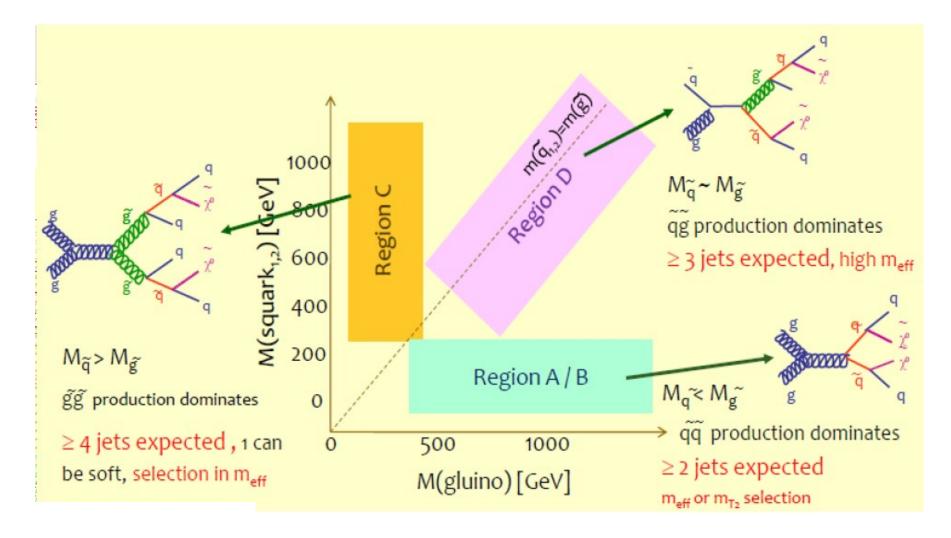

General search strategy

- Definition of Signal Regions (SRs) that maximise sensitivity to different models
 - → based on discriminating variables

- Identification and estimation of SM backgrounds
 - → different techniques (preferably data-driven)
- Search for non-SM excess
 - → cut & count
 - → resonances

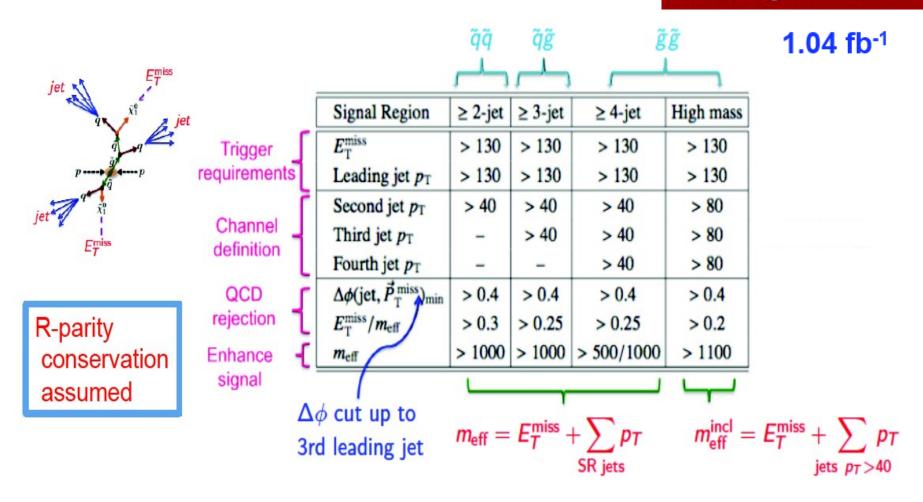


- If no excess, model independent limits set
 - → different stat. methods
 - → different interpretations


$$\sigma_{\mathsf{BSM}} imes \varepsilon imes A$$

SUSY search results

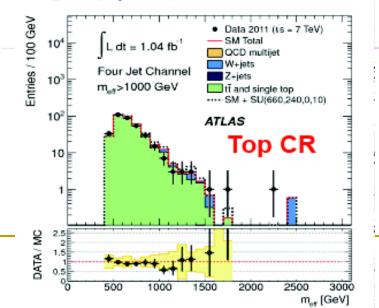
- Searching for SUSY:
 - Sum all energy in the detector
 - Compute the energy balance in the plane transverse to the beam axis (E_T^{miss})
- E_T^{miss} distribution well described within 5 orders of magnitude:
 - Very good understanding of the detector!

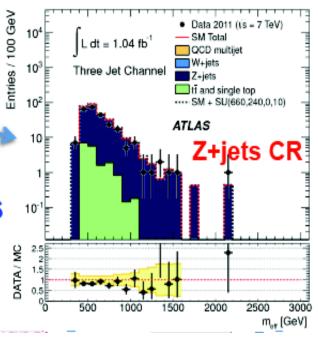

0-lepton + Jets + E_Tmiss

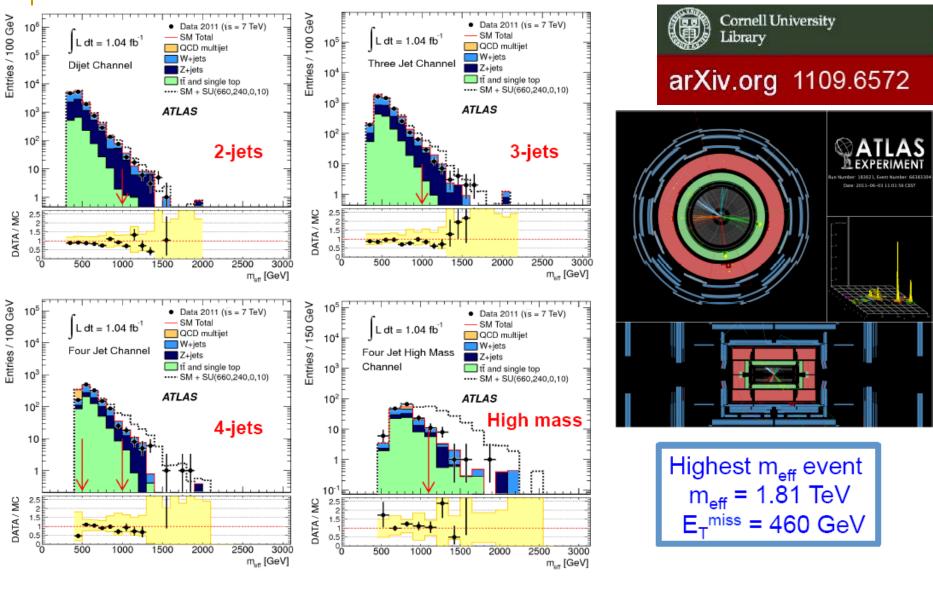
0-lepton signature

arXiv.org 1109.6572

0-lepton signature

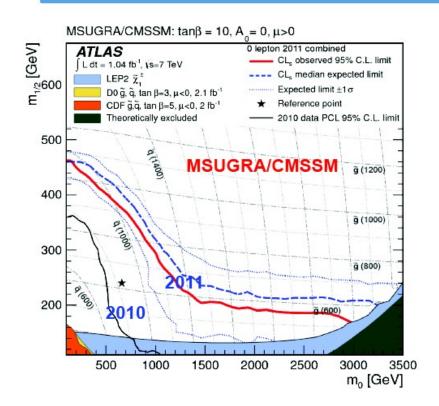


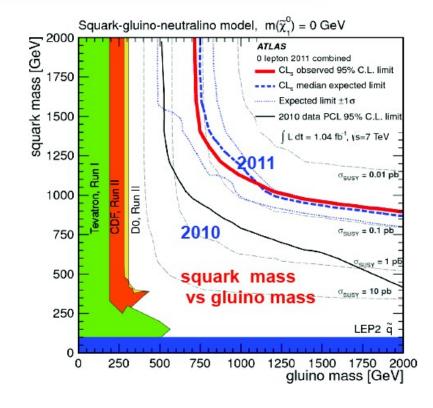

arXiv.org 1109.6572


Backgrounds: ttbar, Z+jets, W+jets multijet

control regions

reverse $\Delta\Phi(\text{jet},p_T^{\text{miss}})$ cut

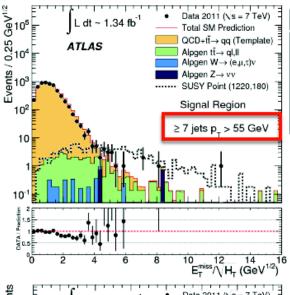



Effective mass (m_{eff}) distributions in signal regions.

No excess observed: limits set (CL_s method, profile likelihood technique))

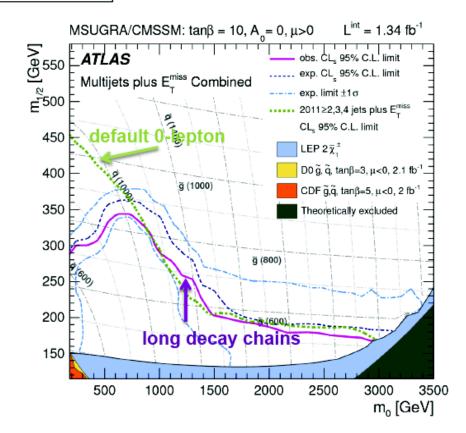
Process	Signal Region							
Ticcs	≥ 2-jet	≥ 3-jet	\geq 4-jet, $m_{\rm eff} > 500~{ m GeV}$	\geq 4-jet, $m_{\rm eff} > 1000~{ m GeV}$	High mass			
Z/γ +jets	32.3 ± 2.6 ± 6.9	25.5 ± 2.6 ± 4.9	209 ± 9 ± 38	16.2 ± 2.2 ± 3.7	3.3 ± 1.0 ± 1.3			
W+jets	26.4 ± 4.0 ± 6.7	$22.6 \pm 3.5 \pm 5.6$	$349 \pm 30 \pm 122$	13.0 ± 2.2 ± 4.7	2.1 ± 0.8 ± 1.1			
tī+ single top	3.4 ± 1.6 ± 1.6	$5.9 \pm 2.0 \pm 2.2$	425 ± 39 ± 84	$4.0 \pm 1.3 \pm 2.0$	5.7 ± 1.8 ± 1.9			
OCD multi-iet	0.22 + 0.06 + 0.24	$0.92 \pm 0.12 \pm 0.46$	34 + 2 + 29	0.73 + 0.14 + 0.50	$2.10 \pm 0.37 \pm 0.82$			
Total	62.4 ± 4.4 ± 9.3	54.9 ± 3.9 ± 7.1	1015 ± 41 ± 144	33.9 ± 2.9 ± 6.2	13.1 ± 1.9 ± 2.5			
Data	58	59	1118	40	18			

εσA limit (fb): 22 25 429 27 17



Long decay chain

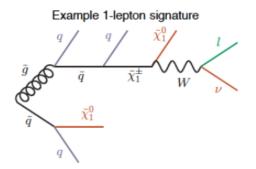
arXiv.org 1110.2299


1.34 fb⁻¹

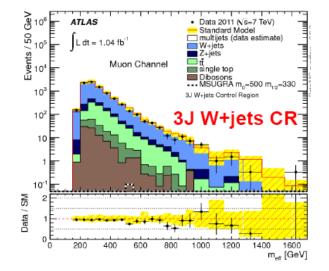
80.5	.		11		
0	2	4	6	8	10 12 14 16 E _T ^{miss} /\H _T (GeV ^{1/2})
Events 10 ⁵	J	. dt ~ 1.	.34 fb ⁻¹	•	Data 2011 (\s = 7 TeV) Total SM Prediction QCD+tt→ qq (Template) Alpgen tt→ ql,ll
10⁴		•			Alpgen W→ (e μ,τ)v Alpgen Z→ vv SUSY Point (1220,180)
10 ³			-		Signal Region
10 ²		-			E _T ^{miss} ∕√ H _T > 3.5 GeV ^{1/2}
10				Ţ.	р _т > 80 GeV jets
1					
10 ⁻¹ ₽					
DATA/Prediction					
۔۔۔ان	2	4	6	8	10 12 14 Number of Jets

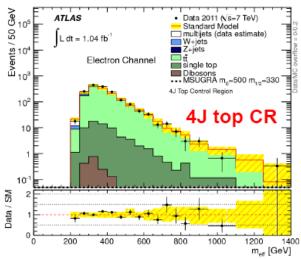
Signal region	7j55	8j55	6j80	7j80	
Jet p _T	> 55 GeV		> 80 GeV		
Jet η	< 2.8				
ΔR_{jj}	> 0.6 for any pair of jets				
Number of jets	≥7	≥8	≥6	≥7	
$E_{\rm T}^{\rm miss}/\sqrt{H_T}$	> 3.5 GeV ^{1/2}				

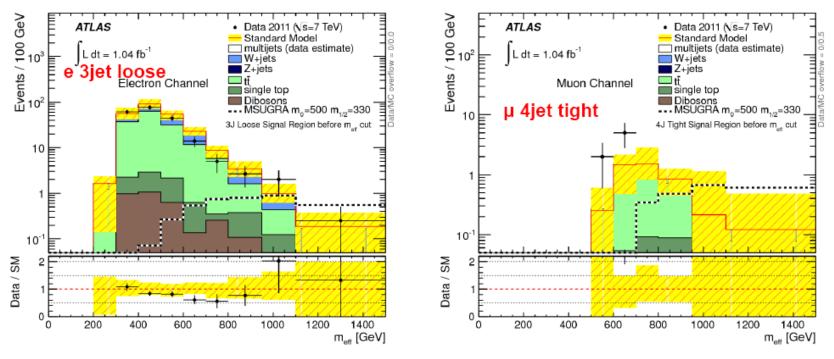
Signal region	7j55	8j55	6j80	7j80
Total Standard Model	39 ± 9	2.3+4.4	26 ± 6	1.3+0.9
Data	45	4	26	3


1 lepton+Jets+E_Tmiss

arXiv.org 1109.6606

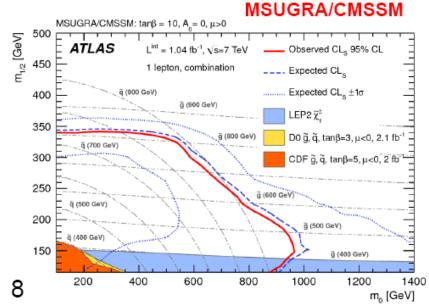

1.04 fb⁻¹

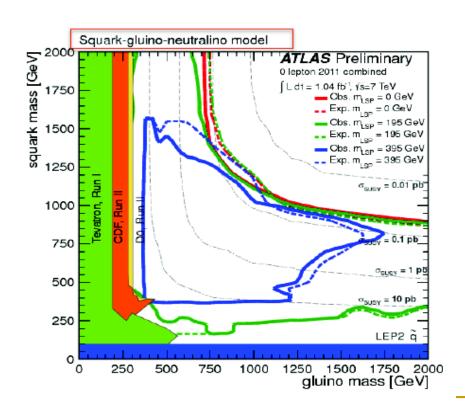

		Signal l	Control Regions			
Selection	3JL	3JT	4JL	4JT	3Ј	4J
Number of Leptons			=	: 1		
Lepton p _T (GeV)		> 25(20) for el-	ectrons (n	nuons)	
Veto lepton p _T (GeV)		> 20(10) for cl	ectrons (n	nuons)	
Number of jets	≥	3	≥	4	≥ 3	≥ 4
Leading jet p _T (GeV)	60	80	60	60	60	60
Subsequent jets p _T (GeV)	25	25	25	40	25	25
$\Delta \phi(\vec{\text{jet}}_i, \vec{E}_{\text{T}}^{\text{miss}})$		[> 0.2	$(\text{mod}.\pi)]$	for all 3	(4) jets	
m _T (GeV)		> 1	100		40 < r	$n_{\rm T} < 80$
E _T ^{miss} (GeV)	> 125 > 240 :		> 140	> 200	30 < E	miss < 80
$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}$	> 0.25	> 0.15	> 0.30	> 0.15	_	_
m _{eff} (GeV)	> 500	> 600	> 300	> 500	> 500	> 300



Backgrounds: W+jets, ttbar (multijet negligible)

BG estimation using control regions



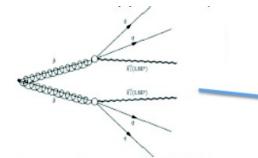

m_{eff} in signal regions: no excess

Electron channel	3JL SR	3JT SR	4JL SR	4JT SR
Observed events	71	14	41	9
Fitted background events	98 ± 28	$\textbf{18.5} \pm \textbf{7.4}$	48 ± 18	$\textbf{8.0} \pm \textbf{3.7}$
Muon channel	3JL SR	3JT SR	4JL SR	4JT SR
Observed events	58	11	50	7
Fitted background events	64 ± 19	$\textbf{13.9} \pm \textbf{4.3}$	53 ± 16	6.0 ± 2.7
εσΑ limits (fb)	e: 50 ı: 36	14 10	33 31	10 9
1	1. 50	10	01	J

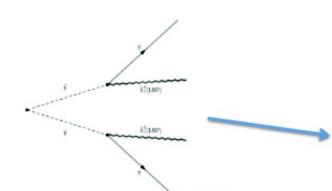
SUSY: simplified models

MSSM-inspired models of well-defined production and decay modes Explore dependence of free parameters Introduce complexity progressively

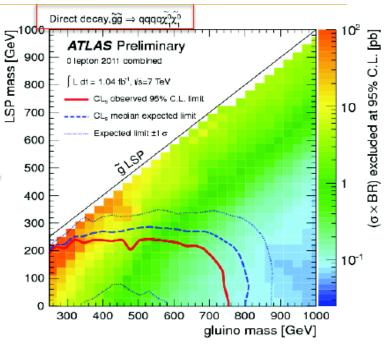
Simplified models for 0-lepton channels

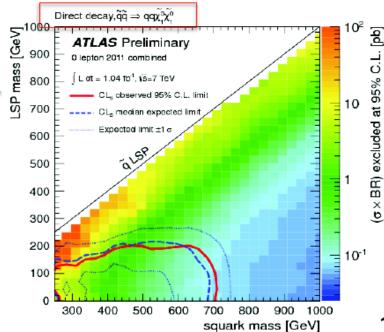

red: massless LSP

green: LSP 195 GeV


blue: LSP 395 GeV

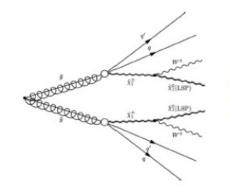
ATLAS-CONF-2011-155


Simplified models for 0-lepton channel

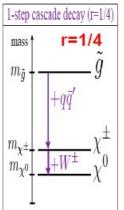


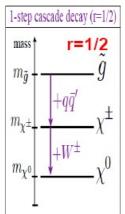
Free parameters: gluon and LSP mass

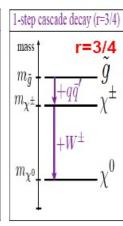
Free parameters: squark and LSP mass



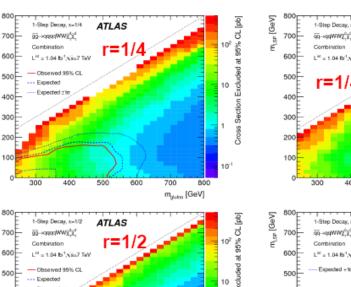
E. Richter-Was

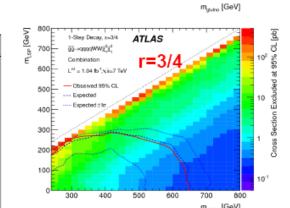

18 January 2012

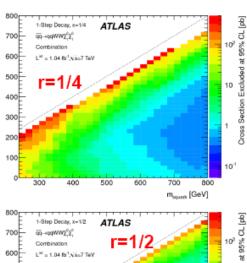

1 lepton simplified model

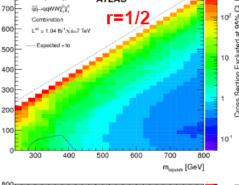


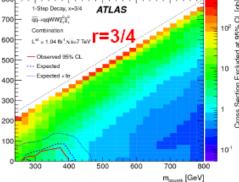
1-step via intermediate chargino



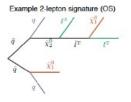





gluino decay



squark decay


(Colours represent cross section upper limits)

Null searches so ... (after 2 years of LHC with 1fb⁻¹ analysed data)

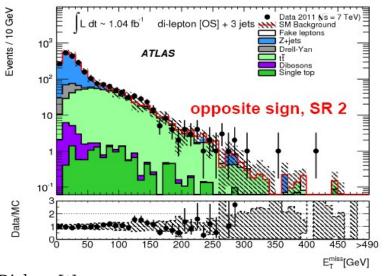
- Null searches also for any other BSM signal
- What next...
 - Generalize away from (over) constrained scenarios
 - Gaugino sector and sleptons: multi-leptons, photons
 - Stop (and sbottom and stau) sectors (major motivation for SUSY at low energies)
 - Non- "canonical" scenarios:
 - semi-stable SUSY particles, R-parity violation

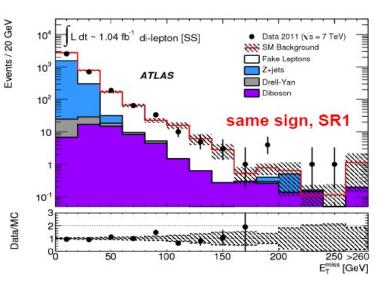
Dileptons

arXiv.org 1110.6189

Common cuts

Same Sign

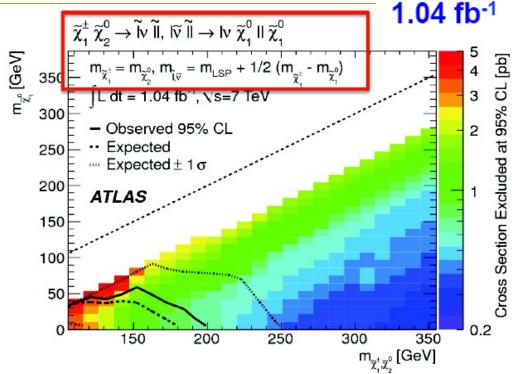

1.04 fb⁻¹

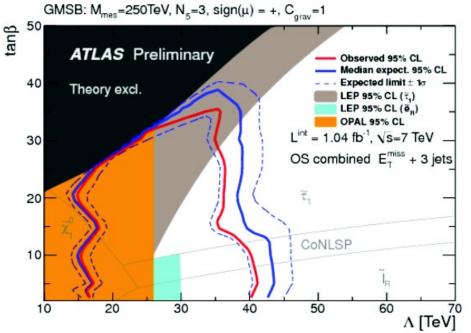

- Preselection (Data Quality, Trigger, Primary Vertex)
- ▶ 2 leptons: electron $p_T > 25/20$ GeV, muon $p_T > 20/10$ GeV, $m_{\parallel} > 12$ GeV

Opp	Opposite Sign					
SR1	<i>E</i> _T > 250 GeV					
SR2	3 jets $p_T > 80, 40, 40$ GeV. $\not\!\!E_T > 220$ GeV (gluino 2-body decays)					
SR3	4 jets $p_T > 100, 70, 70, 70$ GeV, $\not\!\!E_T > 100$ GeV (gluino 3-body decays)					

	io oigii
SR1	$E_T > 100$ GeV (weak gaugino production)
SR2	2 jets $p_T > 50, 50$ GeV, $\not\!\!E_T > 80$ GeV (mSUGRA/CMSSM)

	Background	Obs.	95% CL
OS-SR1	15.5 ± 4.0	13	9.9 fb
OS-SR2	13.0 ± 4.0	17	14.4 fb
OS-SR3	5.7 ± 3.6	2	6.4 fb
SS-SR1	32.6 ± 7.9	25	14.8 fb
SS-SR2	24.9 ± 5.9	28	17.7 fb



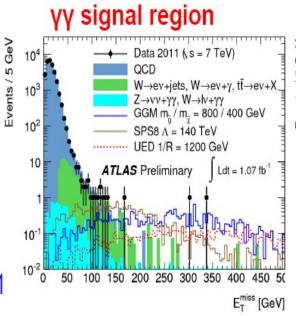


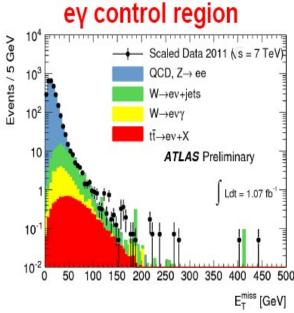
Dileptons

Same sign dilepton interpretation in simplified model of weak gaugino production: $\tilde{\chi}_1 \pm \tilde{\chi}_2^0$

Interpretation in GMSB

(opposite sign SR2)

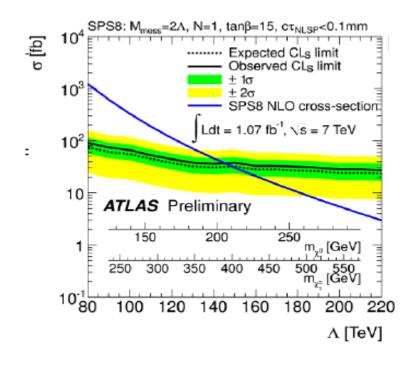

ATLAS-CONF-2011-156


$\gamma\gamma$ + E_T^{miss}

1.07 fb⁻¹

Gauge mediation with bino-like NLSP: $\tilde{\chi}^0 \rightarrow \gamma \tilde{G}$

Selection: 2 tight γ E_T > 25 GeV, isolated, $|\eta|$ <1.37 or 1.52< $|\eta|$ <1.81



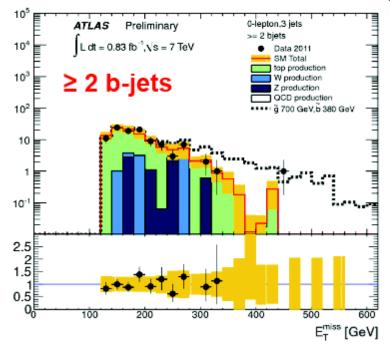
$E^{!}$	miss range	Data		Predicted	background events	Expe	ected signal e	vents	
	[GeV]	events	Total	QCD	$W/t\bar{t}(\rightarrow e\nu) + X$	Irreducible	GGM	SPS8	UED
-	75 - 100	11	14.7 ± 1.2	6.7 ± 0.9	7.4 ± 0.8	0.52 ± 0.10	0.8 ± 0.1	2.1 ± 0.1	0.15 ± 0.01
1	100 - 125	6	4.9 ± 0.7	1.6 ± 0.4	3.0 ± 0.5	0.23 ± 0.05	1.2 ± 0.1	2.5 ± 0.1	0.29 ± 0.02
	> 125	5	4.1 ± 0.6	0.8 ± 0.3	3.1 ± 0.5	0.15 ± 0.01	17.2 ± 0.5	13.0 ± 0.3	9.67 ± 0.11

$\gamma\gamma$ + E_T^{miss}

1.07 fb⁻¹

GGM: bino-like neutralino, $tan\beta = 2$, $ct_{NLSP} < 0.1$ mm 1200 · · · · ATLAS Expected CLs Limit 1100 ATLAS Observed CLs Limit 1000 $\pm 1\sigma$ ATLAS Observed CL_S Limit (36 pb⁻¹) 900 800 $\int Ldt = 1.07 \text{ fb}^{-1}$ 700 $\sqrt{s} = 7 \text{ TeV}$ 600 **g NLSP** 500 ATLAS Preliminary 400 200 400 1000 1200 600 800 m_y [GeV]

Interpretation in minimal gauge mediation: SPS 8 benchmark slope

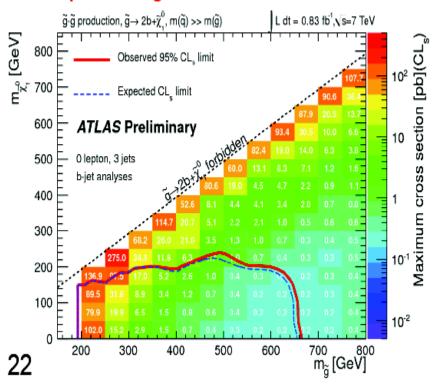

Interpretation in general gauge mediation: gluino and $\tilde{\chi}^0$ mass free, bino-like $\tilde{\chi}^0$

Sbottom production in gluino decays

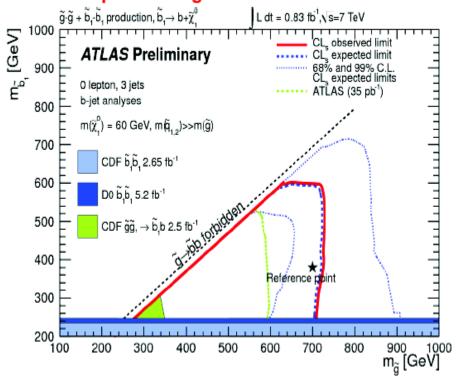
0.83 fb⁻¹

≥3 jets, $p_T > 130$, 50, 50 GeV, ≥1 jet b-tagged 3 jets $\Delta\Phi(\text{jet}, E_T^{\text{miss}}) > 0.4$ Veto events with isolated e or μ $E_T^{\text{miss}} > 130$ GeV, $E_T^{\text{miss}}/m_{\text{eff}} > 0.25$

\widetilde{g} - \widetilde{g} production, $\widetilde{g} \rightarrow 2b + \widetilde{\chi}_1^0$


Sig. Reg.	Data (0.83 fb^{-1})	Top	W/Z	QCD	Total
$3JA (1 btag m_{eff} > 500 GeV)$	361	221^{+82}_{-68}	121 ± 61	15 ± 7	356^{+103}_{-92}
3JB (1 btag $m_{\text{eff}} > 700 \text{ GeV}$)	63	37^{+15}_{-12}	31 ± 19	1.9 ± 0.9	70^{+24}_{-22}
$3JC$ (2 btag $m_{eff} > 500 GeV$)	76	55^{+25}_{-22}	20 ± 12	3.6 ± 1.8	$79^{+\overline{28}}_{-25}$
$3JD$ (2 btag $m_{eff} > 700 \text{ GeV}$)	12	$7.8^{+3.5}_{-2.9}$	5 ± 4	0.5 ± 0.3	$13.0^{+5.6}_{-5.2}$

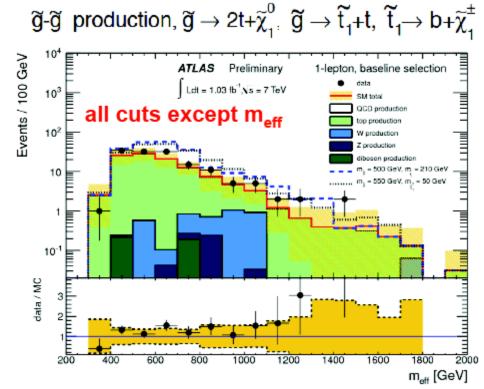
Events/ 100 GeV


Sbottom production in gluino decays

ATLAS-CONF-2011-098

Interpretation: gluino → 2b + LSP

Interpretation: gluino → sbottom + bottom

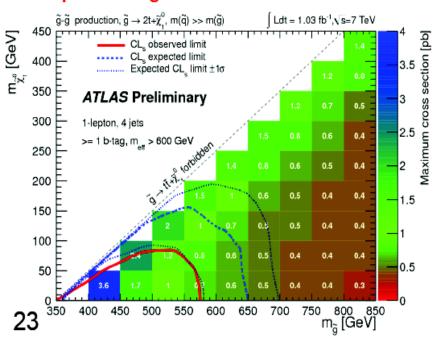


Stop production in gluino decays

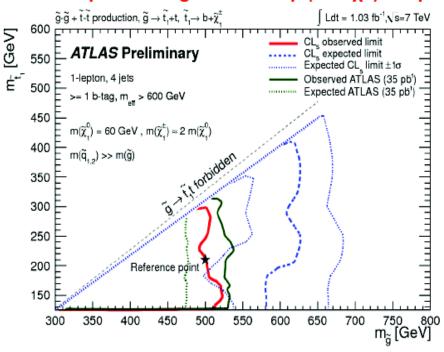
1.03 fb⁻¹

Analysis: b-jets plus isolated lepton signature One e or μ with $p_T > 20$ GeV At least four jets with $p_T > 50$ GeV

ATLAS-CONF-2011-130

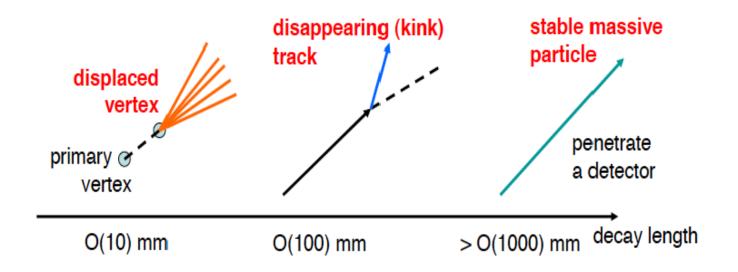


Cuts	≥ 4 jets	$\geq 1 b$ jet	$E_{\mathrm{T}}^{\mathrm{miss}} > 80 \ \mathrm{GeV}$	$m_T > 100 \text{ GeV}$	$m_{\rm eff} > 600~{ m GeV}$
SM (MC)	6574 ± 1870	3096 ± 1042	881 ± 356	109 ± 55	52 ± 28
SM (d-d)					54.9 ± 13.6
data	6659	3361	989	141	74


Stop production in gluino decays

ATLAS-CONF-2011-098

Interpretation: gluino → 2t + LSP



Interpretation: gluino \rightarrow stop (\rightarrow b $\tilde{\chi}^{\pm}$) + top

Special final states

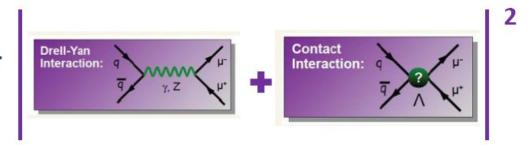
Long-living supersymmetric particles: very well possible in SUSY!

R-hadrons, R-parity violation, compressed spectra (AMSB)

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: Dec. 2011) Final results MSUGRA/CMSSM: 0-lep + j's + E_{T,miss} L=1.0 (b⁻¹ (2011) [arXiv:1109.6872] 950 Gev q = g mass ATLAS $E_T^{\text{miss}} + X$: MSUGRA/CMSSM: 1-lep + j's + E_{T,miss} L=1.0 fb⁻¹ (2011) [arXiv:1109.6606] 820 GeV q = g mass Preliminary MSUGRA/CMSSM : multijets + E_{T,miss} L=1.3 (b-1 (2011) [arXiv:1110.2269] -0/1/2 lep+jets see GeV \widetilde{g} mass (for $m(\widetilde{q}) = 2m(\widetilde{g})$) $Ldt = (0.03 - 2.0) \text{ fb}^{-1}$ Simpl. mod.: 0-lep + j's + E_{T.miss} L=1.0 tb⁻¹ (2011) [arXiv:1109.6872] 1.075 TeV $\tilde{q} = \tilde{g}$ mass (light $\tilde{\chi}_{i}^{0}$) - multijets s = 7 TeV Simpl. mod.: 0-lep + j's + E_{T.miss} L=1.0 fb⁻¹ (2011) [arXiv:1109.6572] 875 GeV \tilde{q} mass $(m(\tilde{q}) < 2 \text{ TeV}, \text{ light } \tilde{\chi}_{\star}^{0})$ Simpl. mod.: 0-lep + j's + E_{T,mis} 700 GeV \tilde{g} mass $(m(\tilde{q}) < 2 \text{ TeV, light } \tilde{\chi}^0)$ $sg \rightarrow 4$ jets Simpl. mod.: 0-lep + j's + E_{T.miss} L=1.0 Ib-1 (2011) [ATLAS-CONF-2011-185] 700 GeV \widetilde{q} mass $(m(\widetilde{q}) < 2 \text{ TeV}, m(\widetilde{\chi}_s^0) < 200 \text{ GeV})$ Simpl. mod.: 0-lep + j's + E_{T,miss} L=1.0 16-1 (2011) [ATLAS-CONF-2011-185] **650 GeV** \tilde{g} mass $(m(\tilde{q}) < 2 \text{ TeV}, m(\tilde{\chi}_1^0) < 200 \text{ GeV})$ soo GeV. \widetilde{g} mass $(m(\widetilde{\chi}^0) < 200 \text{ GeV}, \Delta m(\widetilde{\chi}^{\pm}, \widetilde{\chi}^0) / \Delta m(\widetilde{g}, \widetilde{\chi}^0) > 1/2)$ Simpl. mod. $(\tilde{g} \rightarrow q \overline{q} \tilde{\chi}^{\pm})$: 1-lep + j's + $E_{T,m|ss}$ L=1.0 16-1 (2011) [arXiv:1109.6606] Simpl. mod.: 0-lep + b-jets + j's + E_{T miss} 720 GeV \tilde{g} mass $(m(\tilde{b}) < 600 \text{ GeV}, \text{ light } \tilde{\chi}^0)$ **Preliminary** Simpl. mod. $(\tilde{g} \rightarrow t\bar{t} \tilde{\chi}_{1}^{0})$: 1-lep + b-jets + j's + $E_{T,miss}$ L=1.0 fb⁻¹(2011) [ATLAS-CONF-2011-130] 540 GeV \widetilde{g} mass $(m(\widetilde{\chi}_{t}^{0}) < 80 \text{ GeV})$ Simpl. mod. $(\widetilde{b}_i \rightarrow b\widetilde{\chi}_i^0)$: 2 b-jets + $E_{T,miss}$ L=2.05 fb⁻¹ (2011) [Proliminary] 390 GeV \tilde{b} mass $(m(\bar{\chi}_{*}^{0}) < 60 \text{ GeV})$ $E_T^{\text{miss}} + X: \tilde{b}/\tilde{t}$ Simpl. mod. $(\widetilde{\chi}_{-\chi}^{\pm})^0 \rightarrow 3l \widetilde{\chi}_{-}^0)$: 2-lep SS + $E_{\gamma,\text{miss}}$ L=1.0 Ib⁻¹ (2011) [a/Xiv:1110.6109] $\widetilde{\chi}_{+}^{\pm} \text{ mass (light } \widetilde{\chi}_{+}^0, m(\widetilde{l}) = \frac{1}{2}(m(\widetilde{\chi}_{+}^{\pm}) + m(\widetilde{\chi}_{-}^0))$ long-lived: $\tilde{\chi}_1^{\pm}$ GMSB : 2-lep OS_{ec} + E_{T,miss} L=1.0 (b⁻¹/2011) IATLAS-CONF-2011-1561 BIO GeV g mass (corresp. to Λ < 35 TeV, tanβ < 35) GGM + Simpl. model : $\gamma\gamma + E_{T,miss}$ 805 GeV g mass (m(bino) > 50 GeV) GMSB : stable ∓ AMSB: long-lived $\widetilde{\chi}_{i}^{\pm}$ $L=1.0 \text{ tb}^{-1} (2011) \text{ [Prol]}$ $\widetilde{\chi}_{i}^{\pm}$ mass $(0.5 < \tau(\widetilde{\chi}_{i}^{\pm}) < 2 \text{ ns})$ Stable massive particles : R-hadrons L=34 pb⁻¹ (2010) [arXiv:1103.1984] 562 GeV g mass New interpret. Stable massive particles: R-hadrons L=34 pb-1 (2010) [arXiv:1103.1984] 294 GeV b mass Stable massive particles: R-hadrons Lad4 pb-1 (2010) [arXiv:1103.1804] $E_T^{\text{miss}} + X$: 0/2 lep+jets Hypercolour scalar gluons : 4 jets, m_{ii} ≈ m_{ii} sgluon mass (excl: m_{sa} < 100 GeV, m_{sa} = 140 ± 3 GeV) RPV: high-mass eµ 1.32 TeV \tilde{v}_{τ} mass $(\lambda'_{311}=0.10, \lambda_{312}=0.05)$ Bilinear RPV : 1-lep + j's + E_{T,miss} L=1.0 16⁻¹ (2011) [arXiv:1100.6606] 760 GeV q=g mass (cτ_{ISP} < 15 mm) 10^{-1}

Mass scale [TeV]

Search for contact interactions


Motivations: 4-fermion contact interaction (CI) can be a low-

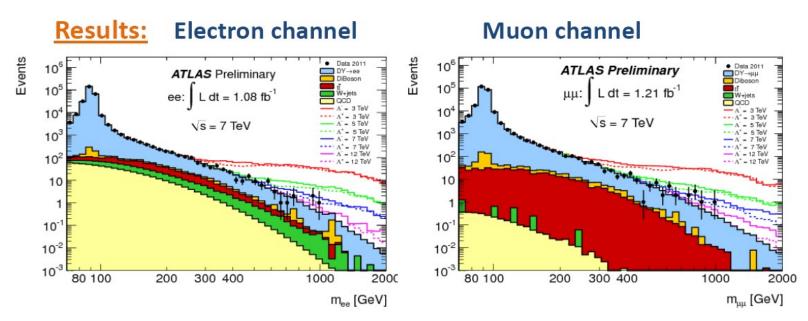
energy description of: ➤ Large Extra Dimension ADD model

Quark-lepton compositeness

Analysis strategy:

Look for excess over Drell-Yan production selecting high-quality leptons

Context of left-left isoscalar model:


$$\frac{d\sigma}{dm_{\ell\ell}} = \frac{d\sigma_{DY}}{dm_{\ell\ell}} - \eta_{LL} \frac{F_I(m_{\ell\ell})}{\Lambda^2} + \frac{F_C(m_{\ell\ell})}{\Lambda^4}$$

- •F₁: interference interaction
- •η_{LL}±1 •F_C: pure contact interaction

A: Energy scale below which fermion constituents are bound

29 E. Richter-Was 18 January 2012

Search for contact interactions

Lower limits on scale Λ at 95% of Credibility Level:

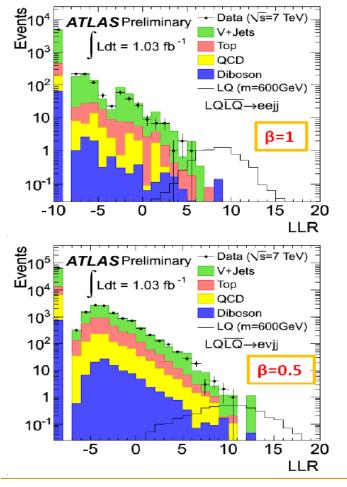
Channel	Prior	Expected Constr.	limit (TeV Destr.) Observed Constr.	limit (TeV) Destr.	
e^+e^-	$1/\Lambda^2$ $1/\Lambda^4$	9.6 8.9	9.3 8.6	10.1 9.2	9.4 8.6	
$\mu^+\mu^-$	$1/\Lambda^2$ $1/\Lambda^4$	8.9 8.3	8.6 7.9	8.0 7.6	7.0 6.7	Most stringent limits to date
Combined	$1/\Lambda^2$ $1/\Lambda^4$	10.4 9.6	10.1 9.4	10.2 9.4	8.8 8.4	

Leptoquarks

<u>Motivations:</u> Leptoquarks (LQ) are color-triplet bosons that carry both lepton and baryon numbers, and fractional electric charge

- ➤Introduced by various extension of the SM (technicolor, GUTs, etc)
- Could explain similarities between the 3 generations of leptons and quarks in the SM, and lead to some symmetry at high energy scale

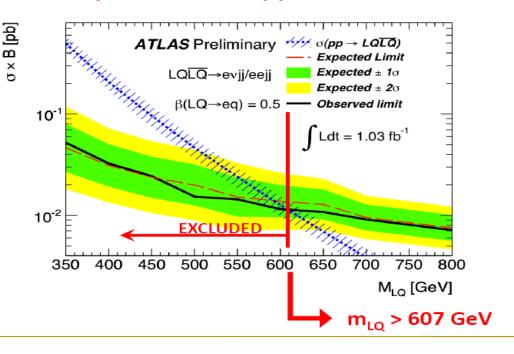
Analysis strategy: Search for pair-produced LQs assumed to couple only to quarks and leptons of the same SM generation \rightarrow Focus here on 1st generation for 2 scenarii: β =BR(LQ \rightarrow eq)


Select:

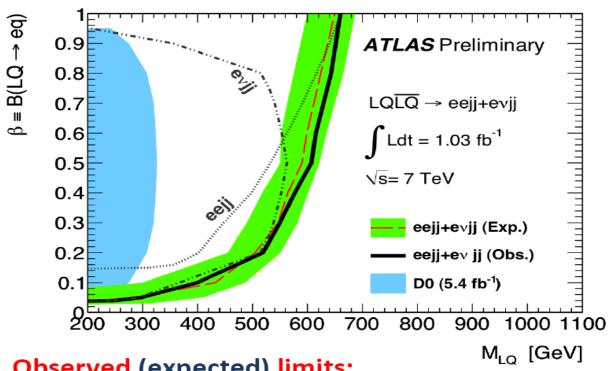
•2 electrons
•2 jets

Select:

• 1 electron
• 2 jets
• Missing energy


Search for first generation of scalar leptoquarks

Analysis strategy cont'd:


Use of Likelihood ratio method to discriminate signal from SM backgrounds

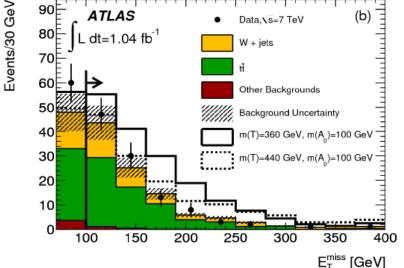
... then put 95% CLs upper limits on oxBR:

Search for first generation of scalar leptoquarks

Results: 95% CL exclusion regions

Observed (expected) limits:

• β =1: $m_{10} > 660(650)$ GeV

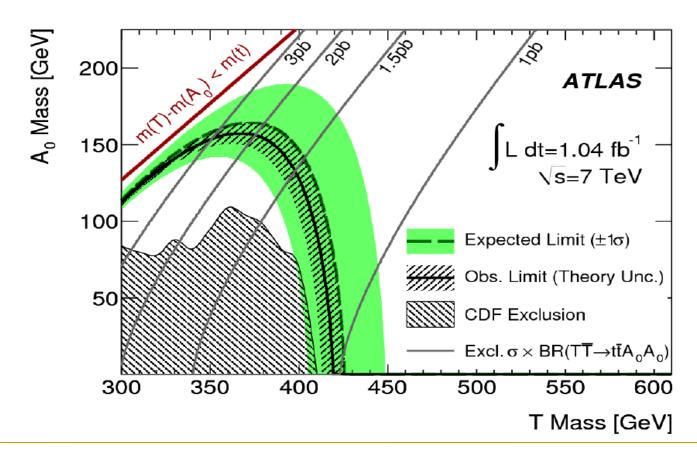

• β=0.5: m_{LO} > 607(587) GeV

Search for exotic top partners with large E_T^{miss}

Motivations: Top quark is the main contributor to quadratic divergence in the Higgs mass → light top partners T (m_T<1TeV) could allow to cancel part of this divergence, and provide solutions to the hierarchy problem

Analysis strategy: Search for $T\overline{T} \rightarrow t\overline{t} A_0 A_0$ with A_0 a stable, neutral

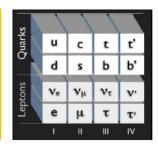
weakly-interacting particle

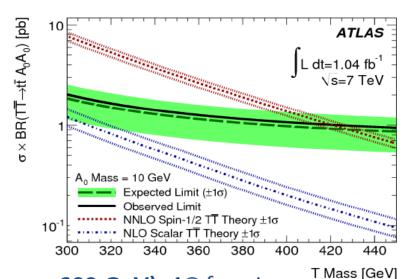

→ Introduced by many models, e.g.:

SuSy, little Higgs, 3rd generation of leptoquarks, extra dimension, etc

- ➤ Many provide mechanism for EWSB, and dark matter candidates
- → Signature identical to $t\overline{t}$, with larger amount of E_T^{miss} (focus here on single-lepton channel)

Search for exotic top partners with large E_T^{miss}


Results: 95% CL exclusion regions assuming B.R. $(T T \rightarrow t\bar{t} A_0 A_0)$ =100%



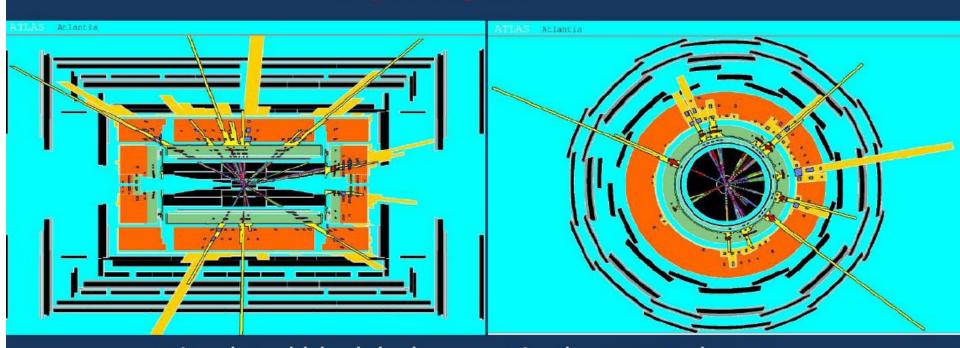
Interesting interpretation

Interesting interpretation:

4th generation (I4,v4,u4,d4) is a natural and simple extension of the SM

Would have major implications:

- Can allow a heavy Higgs
- ➤ If there is no Higgs and u4 is heavy (e.g. ~600 GeV), 4G fermion condensates could play the role of the Higgs via some strong interactions!
- ➤ Could provide 10¹³ to 10¹⁵ more CP Violation to **solve the Baryon**Asymmetry of the Universe problem


 \rightarrow m_{u4} > 420 GeV @ 95% CL; σ xBR < 1.1 pb (with m_{A₀}=10 GeV)

N.B.: limits in blue also ~valid for scalar models, e.g. stop quark pair production

Black holes

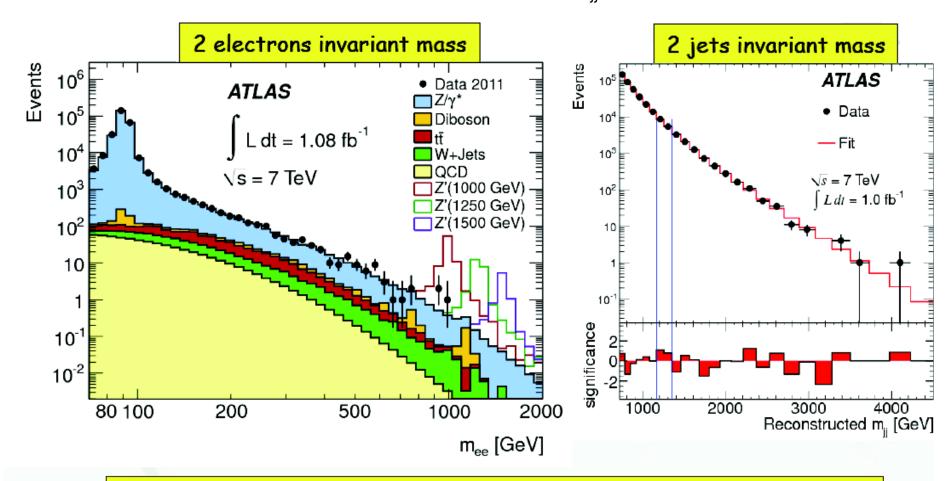
2 searches with different final states:

- ➤Same-sign dimuon
- ► Lepton+jets

Simulated black hole event in the ATLAS detector

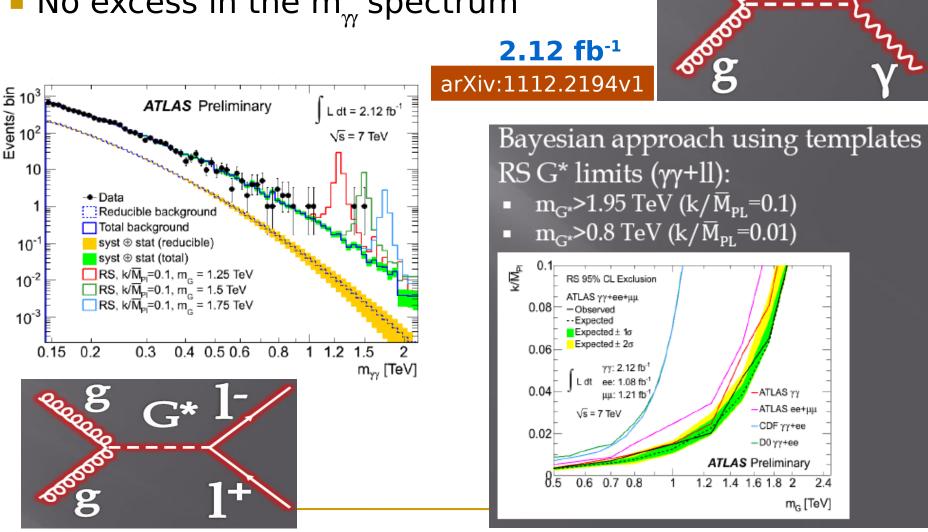
Search for heavy resonances

- Predicted by numerous extensions of the Standard Model:
 - → GUT-inspired theories, Little Higgs → heavy gauge boson(s) Z' (W')
 - → Technicolor → narrow technihadrons
 - → Randall-Sundrum ED → Kaluza-Klein graviton
- Experimental challenge: understand detector performance (resolution, efficiency) for a signal with (almost) no control sample at very high momentum → confidence in alignment, simulation, etc...

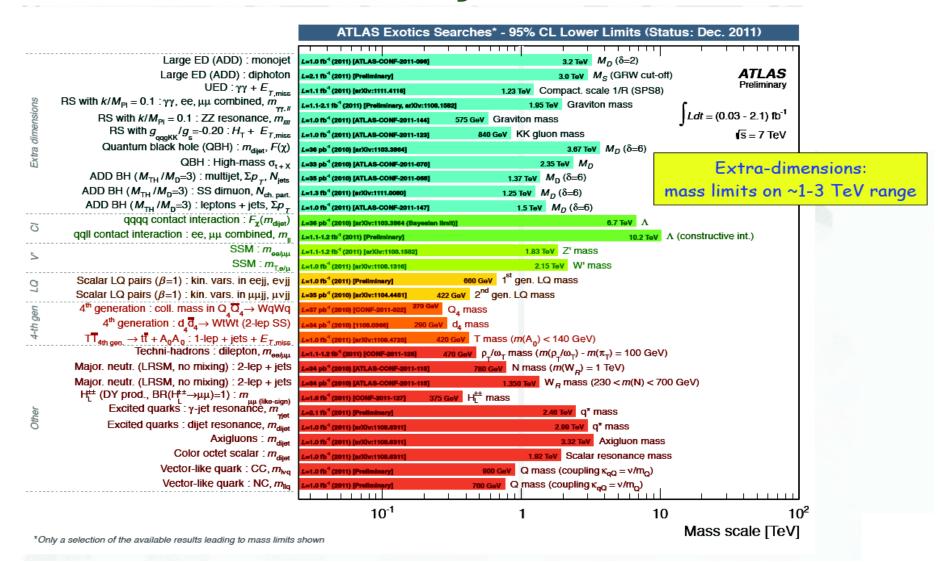

Electrons and muons:

Rapidly approaching 1 TeV!

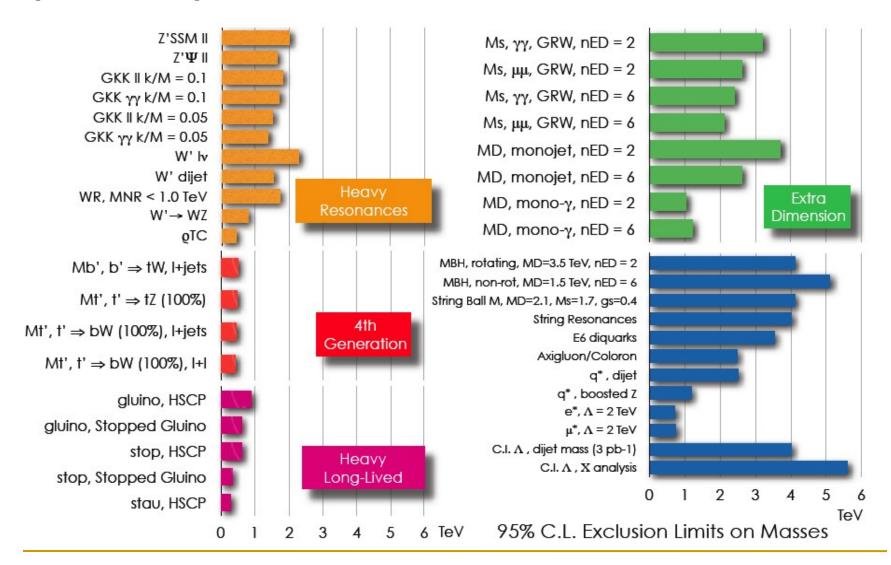
Search for heavy particles-resonances


- Search for peaks in different spectra
 - \square Reached very high masses: ~4TeV (m_{ii}) and 1 TeV (m_{ee})

This allows to put more stringent lower mass limits to heavy new particles


Diphoton resonances search

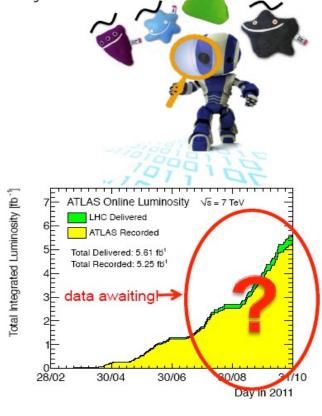
No excess in the m_m spectrum



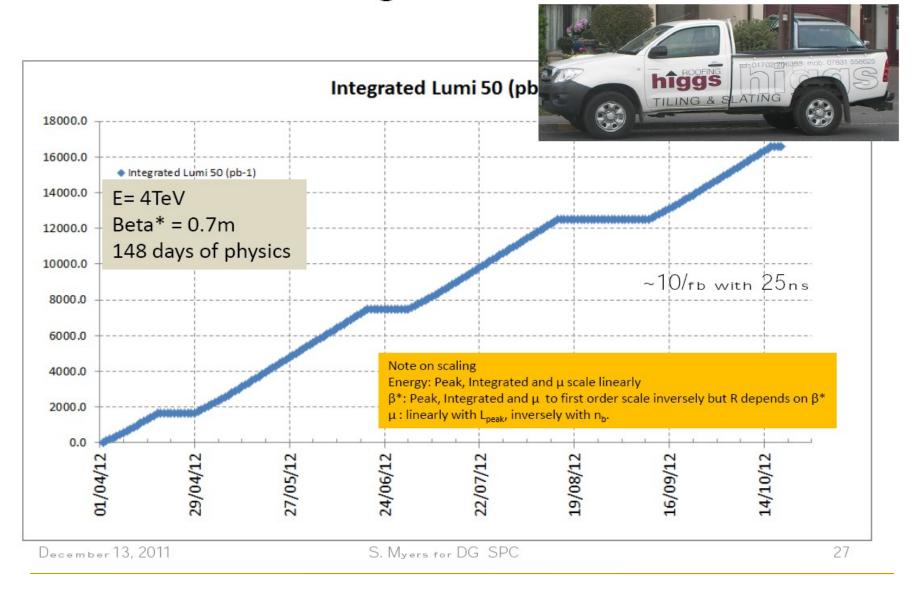
40 E. Richter-Was 18 January 2012

New exotic physics search result summary

(NULL) searches in CMS



Summary on BSM searches


- ATLAS has performed many different BSM searches
- So far, no indication of BSM physics in any
 - → most stringent limits set on popular models

Outlook

- ullet analyse rest of 2011 data \sim 4 fb $^{-1}$
- + upcoming data in 2012!
- Searches for other signatures coming
- Present searches will keep going
 - more and refined SRs
 - refined background estimates

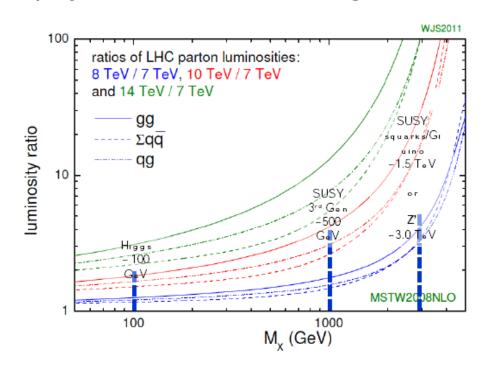
2012 Integrated with 50ns

LHC running in 2012: 8 TeV [?]

Enhances physics reach in two ways:

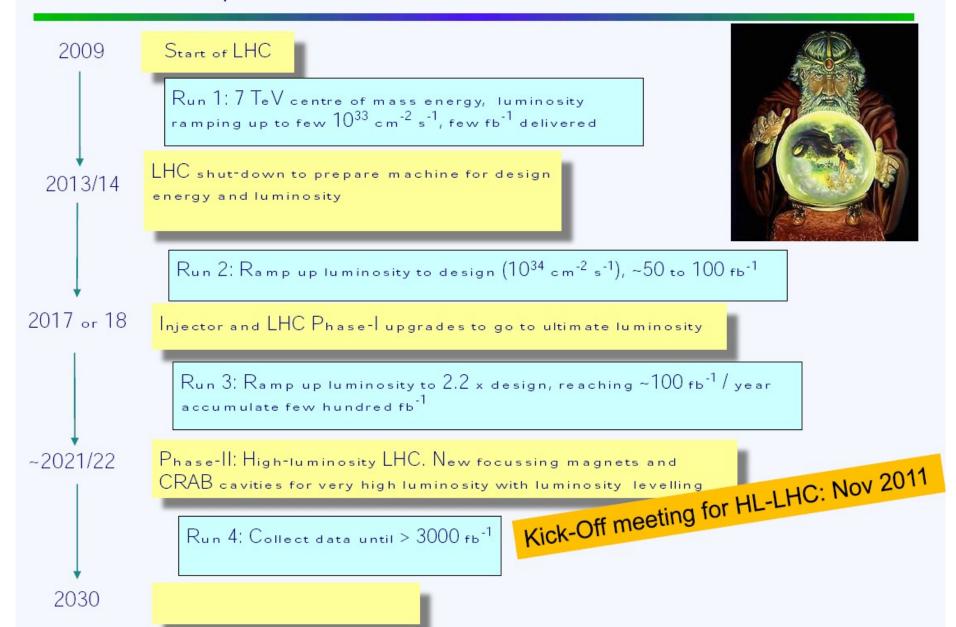
Higher cross-sections for new physics in full mass range

```
Higgs: pp \rightarrow H, H\rightarrow WW, ZZ & \gamma\gamma mainly gg: Factor \sim1.2
```


SUSY: 3rd Gen Mass ~ 0.5 TeV

qq and gg: Factor ~1.5

SUSY: Squarks/Gluino M~1.5TeV


qq,gg,qg: Factor ~4.0

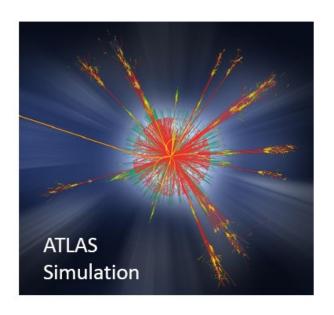
Z': Mass ~ 3.0 TeV qq: Factor ~3.5

- More integrated luminosity
 - @ 8 TeV: 10 16fb⁻¹ expected (25/50 ns bunch crossing)

The predictable future: LHC Time-line

Summary and Outlook

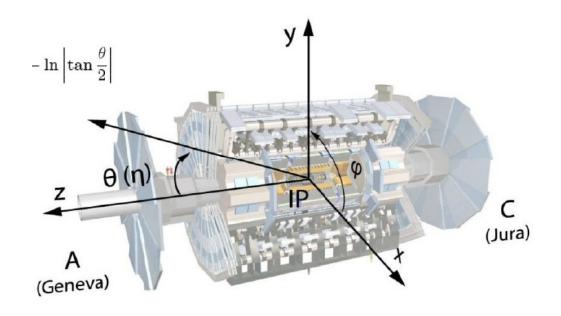
- LHC and experiments' run at 7 TeV truly impressive
 - By now detectors are fully functioning scientific instruments;
- With ~40pb⁻¹ the LHC observed all particles of the Standard Model
 - Solid base for understanding the "background" to searches at higher mass and transverse energy scales
- With 5 fb⁻¹ we entered a true discovery era
 - (null) searches so far
- With 10-15 fb⁻¹
 - SUSY explorable over very large area; possible new resonances;
 very large reach for other new physics;
- The journey has just started.


The ATLAS detector 44 m **Muon Detectors** Tile Calorimeter Liquid Argon Calorimeter pseudorapidity: $\eta = -\ln(\tan(\theta/2))$ angular distance: $\Delta \mathbf{R} = \sqrt{\Delta \eta^2 + \Delta \phi^2}$ 24 m η=infinite 7000 tons 88 Million channels 3000 km of cables **Toroid Magnets** Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker 2T solenoid

Toroid (B $\sim 0.5T$ in barrel; $\sim 1T$ end-cap)

Black holes

Motivations: Models introducing extra dimensions can provide a solution to the hierarchy problem (M_{Pl} ~10¹⁶GeV >> M_{EW})


→ The Planck scale in (n+4)-dimensions, M_D, would be much smaller than in 4D, because gravity propagates in all dimensions

If M_D is in the TeV range, microscopic black-holes could appear @LHC!... ... and evaporate by Hawking radiation

Large uncertainties on models due to our ignorance of quantum gravity, but semi-classical approximation assumed valid for: m(B.H.) > M_{Threshold} >> M_D

ATLAS Detector

THE ATLAS DETECTOR IS REALLY BIG!

• Length : $\sim 46 \text{ m}$

• Radius : $\sim 12 \text{ m}$

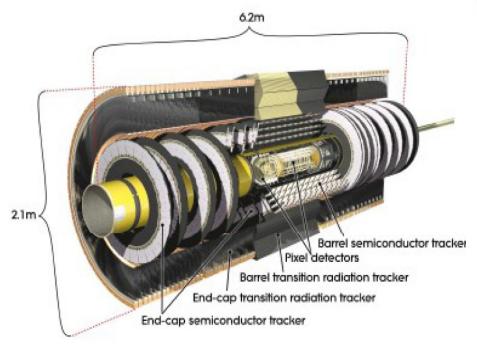
• Weight: $\sim 7000 \text{ tons}$

- $\sim 10^8$ electronic channels
- 3000 km of cables

Transverse momentum

(in the plane perpendicular to the beam)

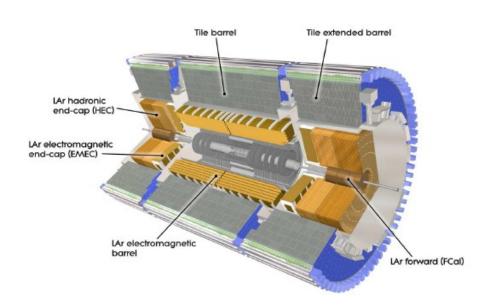
$$p_T = p \sin\theta$$


Rapidity:
$$\eta = -\log(tg\frac{\theta}{2})$$

$$\theta = 90^{\circ} \rightarrow \eta = 0$$

$$\theta = 10^{\circ} \rightarrow \eta \cong 2.4$$

$$\theta$$
 = 170° \rightarrow $\eta \cong$ -2.4


ATLAS Inner Detector

The inner detector $|\eta| < 2.5$ consists of Pixel detectors, semi-conductor

- Pixel detectors, semi-conductor tracker (SCT), transition radiation tracker
 - ≈ 87 million readout channels
 - Immersed in 2T solenoidal magnetic field
- Resolution of $\sigma/p_T = 5 \times 10^{-4} \oplus 0.015$

ATLAS Calorimeters

Electromagnetic and hadronic calorimeters

- Subsystem technology and granularity \leftrightarrow shower characteristics
- Transverse and longitudinal sampling \approx 200000 readout cells up to $|\eta| < 4.9$

Electromagnetic Calorimeters:

- Fine granularity $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$ in central region
- Energy resolution $10\%/\sqrt{E}$

Hadronic Calorimeters:

- Granularity $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ in central region, less segmented in forward region
- Energy resolution $50\%/\sqrt{E} \oplus 0.03$