Physics with first fb⁻¹ at Large Hadron Collider

Today:

Searches for the Higgs boson(s)

ATLAS data collected in 2011

ATLAS publications

ATLAS publications

E. Richter-Was

For Christmas: $\chi_b(3P)$ state observation

- The χ_b(nP) quarkonium states are produced in pp collisions
- Reconstructed through their radiative decays to Υ(1S,2S) with Υ→μμ
- Observed known states: $\chi_{b}(1P, 2P) \rightarrow \Upsilon(1S)\gamma$
- Observed new structure in both $\Upsilon(1S)\gamma$ and $\Upsilon(2S)\gamma$ decay modes
 - Photons reconstructed using either conversion or from calorimetry
 - Centered at mass

10.539±0.004(stat)±0.008(syst) GeV

• Interpreted as $\chi_{b}(3P)$ system

<u>SM Higgs mass constraints</u>

Experiment

Indirect constraints from precision EW data : $M_{H} < 260 \text{ GeV}$ at 95 %CL (2004) $M_{H} < 186 \text{ GeV}$ with Run-I/II prelim. (2005) $M_{H} < 166 \text{ GeV}$ (2006, ICHEP06)

SM theory

The triviality (upper) bound and vacuum stability (lower) bound as function of the cut-off scale Λ

Discovery potential in a complete mass range

E. Richter-Was

Search for the Higgs Particle

Status as of March 2011

90% confidence level 95% confidence level

Higgs cross-section

Elzbieta Richter-Was

Understanding of the Yellow and Green bands :

 Upper limit on the Standard Model (SM) Higgs Boson production cross section divided by the Standard Model expectation as a function of m_{Higgs}

News from HCP (Paris, Nov. 2011)

Summary of present SM Higgs boson searches (ATLAS)

Channel	m _H range (GeV)	Int. lumi fb ⁻¹	Main backgrounds	Number of signal events after cuts	S/B after cuts	Expected σ/σ _{sm} sensitivity
Н→үү	110-150	4.9	YY, YJ, JJ	~70	~0.02	1.6-2
$H \rightarrow \tau \tau \rightarrow +v$	110-140	1.1	Z→ тт, top	~0.8	~0.02	30-60
$H \rightarrow \tau\tau \rightarrow I\tau_{had}$	100-150	1.1	Ζ→ тт	~10	~5 10 ⁻³	10-25
W/ZH → bbl(l)	110-130	1.1	W/Z+jets, top	~6	~5 10 ⁻³	15-25
H →WW ^(*) → lvlv	110-300	2.1	WW, top, Z+jet	~20 (130 GeV)	~0.3	0.3-8
$H \rightarrow ZZ^{(*)} \rightarrow 4I$	110-600	4.8	ZZ*, top, Zbb	~2.5 (130 GeV)	~1.5	0.7-10
$H \! \rightarrow Z Z \rightarrow _{\nu \nu}$	200-600	2.1	ZZ, top, Z+jets	~20 (400 GeV)	~0.3	0.8-4
$H \rightarrow ZZ \rightarrow qq$	200-600	2.1	Z+jets, top	2-20 (400 GeV)	0.05-0.5	2-6
$H \rightarrow WW \rightarrow I v q q$	240-600	1.1	W+jets,top,jets	~ 4 5 (400 GeV)	10 ⁻³	5-10

$H \rightarrow \gamma \gamma$

- At LHC, $H \rightarrow \gamma \gamma$ is the most sensitive channel in the low mass range (110 125 GeV)
 - Small branching ratio, but large event yield due to high selection efficiency
 - Signal peak is expected to be sharp in the $m_{\gamma\gamma}$ spectrum
 - Simple analysis: events with two high E_{T} photons.

Event selection

Event signature is very simple.

Event with two high-Et photons (Ετ(γ1,γ2)>40, 25GeV)

2-photon trigger

Primary vertex selection

(for selecting collision event)

Selection for di-photon event

Photon is required to satisfy the following :

- |η|<1.37 or 1.52<|η|<2.37
- Ετ(γ1)>40GeV, Ετ(γ2)>25GeV
- tight photon-ID (Selection based on the cluster shape

in electromagnetic calorimeter.)

isolation cut

Elzbieta Richter-Was

Analysis

Backgrounds coming from SM events

- Irrreducible BG : yy Main contribution
- Reducible BG : γ+jets, di-jet
- $\cdot Z \rightarrow ee(DY)$ ($\cdot \cdot \cdot very small contribution$)

M(yy) reconstruction

• $M(\gamma\gamma)^2 = 2E_1E_2 \cdot (1 - \cos \alpha)$ (α : opening angle of

the two photons)

 For the precise reconstruction, careful understandings are needed for the followings :

✓ Energy calibration & resolution (related to E1 and E2) **Primary vertex position** (related to α)

Energy calibration and resolution

Photon energy calibration

MC-based calibration (Tuned by beam-test result)

After MC-based calibration,

electron energy scale corrections

are applied to photon energy of data.

(Scale factor is obtained from $Z \rightarrow ee$.)

Energy resolution

Resolution correction is applied to MC.

(This correction factor is also determined by comparing

the Zee peak between data and MC.)

my [GeV]

Signal modeling

Signal MC (ggF, VBF, WH/ZH, ttH) Samples are available at 11 mass points.

(100-150GeV with 5GeV step)

- Peak shape modeling
 - Function : "Crystal-ball + Gaussian"
 - Global fit :

Simultaneous fit is performed for all

mass points in each category.

Some parameters for the peak shape are parameterized linearly as a

function of m_H.

Worst category

(conv transition)

Expected # of signal events (4.9fb⁻¹, inclusive)

mн(GeV)	110	115	120	125	130	135	140	145	150
#evts	69.9	71.5	70.9	68.3	63.7	57.5	49.8	40.8	30.6

Nsig \sim 70evts (for m_H=110-125GeV)

2.3

Backgrounds

Irreducible background (yy)

Reducible background (γ+jet, di-jet)

• Drell-Yan ($Z \rightarrow ee$) • • • Very small contribution

Potentially huge background from γj and j j production with jets fragmenting into a single hard π^0 and the π^0 faking single photon

However: huge uncertainties on σ (γ j, jj) !! \rightarrow not obvious γ j, jj could be suppressed well below irreducible $\gamma\gamma$ until we measured with data

Background decomposition

Decomposition for "yy+DY", "y+jets" and "di-jet" is performed in a data-driven manner.

Control sample is obtained from "anti-cut" region that is defined with photon-ID and isolation variables for the two photons.[※]

◆ DY contribution is also estimated by using "eγ events"

as a control sample.

. Enriched with Z→ee where one electron is faking as photon.


```
The contribution from irreducible BG (γγ)
is dominant. (Fraction = 71%)
(It could be also confirmed that the
contribution from Zee is very small.
(<1%)
```

Event categorization

%To improve sensitivity, data sample

is divided into 9 categories with

2 unconverted:

different S/B and M(γγ) resolution.

9 categories based on conversion status, η and $p_{T,t}$

(a) Based on η and conversion (5 categories)

- Both photons unconverted
 - Central
 - Rest
- At least one photon converted
 - Central
 - Transition
 - Rest

```
(b) Based on p_{T,t} ( 5 \rightarrow 9 categories )
```

♦ рт,t: "рт-thrust"

 $\eta(\gamma^2)$ $\eta(\gamma^2)$ 1.75 1.3 0.75 0.75 $\eta(\gamma^1)$ 0.75 $\eta(\gamma^1)$ 0.75 $\eta(\gamma^1)$

>=1 converted:

Central" and "Rest" categories are divided into "Low-pt,t" and "High-pt,t".

("Transition" category is not divided.)

- pT,t is the transverse component of pT(γγ) with respect to the thrust axis.
- pT,t has more discriminative power than pT(γγ).

Elzbieta Richter-Was

Background modeling

BG shape is defined by the fit with single-exponential in each of 9 categories. (Fit region : 100<M(γγ)<160GeV)

Elzbieta Richter-Was

Main systematics

- (a) Signal yield : ~20%
- (b) H→γγ mass resolution: ~14%
- (c) Migration of signal events between categories (Error on # of signals)

(ex.) Between low⇔high P⊤,t :

 $\angle N_{sig} = \pm 8\%$ (for high P_{T,t}-bin)

(d) BG modeling

∠Nsig = 0.1-5.6 events (Depending on categories)

The intrinsic difference between

- Chosen background model (= exponential)
- True background shape

It is included into sys uncertaintyon # of signal events.

Summary of sys errors	5
Type and source	Uncertainty
(a) Event yield	
Photon reconstruction and identification	±11%
Effect of pileup on photon identification	±4%
Isolation cut efficiency	$\pm 5\%$
Trigger efficiency	$\pm 1\%$
Higgs boson cross section	(+15%/-11%)
Higgs boson $p_{\rm T}$ modeling	±1%
Luminosity	$\pm 3.9\%$
(b) Mass resolution	
Calorimeter energy resolution	±12%
Photon energy calibration	$\pm 6\%$
Effect of pileup on energy resolution	±3%
Photon angular resolution	$\pm 1\%$
(C) Migration	
Higgs boson $p_{\rm T}$ modeling	$\pm 8\%$
Conversion reconstruction	$\pm 4.5\%$

Results for $H \rightarrow \gamma \gamma$

Limit setting

By using profile likelihood ratio method, exclusion limit is obtained with CLs.

Expected limit (1.61-2.87)×SM @110-150GeV (1.61-1.78)×SM @115-130GeV

Observed exclusion
 mн =114-115GeV
 mн =135-136GeV

Results for $H \rightarrow \gamma \gamma$

%p₀ value :

Probability of seeing upward fluctuation in the backgroundonly hypothesis as large as or larger than the obtained excess.

Observed excess at mn=126GeV

- w/ including LEE : 2.8σ (po=0.27%)
- w/o including LEE : 1.5σ (po=6.5%)

$H \rightarrow ZZ^{(*)} \rightarrow 4I$

After all selections: kinematic cuts, isolation, impact parameter

In the region $m_H < 141$ GeV (not already excluded at 95% C.L.) 3 events are observed: two 2e2µ events (m=123.6 GeV, m=124.3 GeV) and one 4µ event (m=124.6 GeV)

In the region 117< m ₄₁ <128 GeV (containing ~90% of a m _H =125 GeV signal):	Main systematic uncertainties		
 □ similar contributions expected from signal and background: ~ 1.5 events each □ S/B ~ 2 (4µ), 1 (2e2µ), ~0.3 (4e) □ Background dominated by ZZ* (4µ and 2e2µ), ZZ* and Z+jets (4e) 	Higgs cross-section : ~ 15% Electron efficiency : ~ 2-8% Zbb, +jets backgrounds : ~ 40% ZZ* background : ~ 15%		

Data and bgd only expectation consistency

Maximum deviation from background only expectation observed at m_μ ~126 GeV:
 Local probability (p₀ value) = 0.019% Local excess significance = 3.6 σ

- Global probability = ~1% Global excess significance = ~2.3 σ
 - Includes the probability for such an excess anywhere in a mass range (LEE)

Tevatron combination

- •Observed Exclusion: 100<M_L<109 & 156<M_L<177 GeV/c² @95%CL.
- Expected Exclusion: 100<M_u<108 & 148<M_u<181 GeV/c²@95%CL.

Tevatron projection

- •Tevatron had a great run for last 28 years operation.
- •With 10 fb⁻¹ analyzable dataset and anticipated improvement, Tevatron will remain competitive to reach 95% CL exclusion sensitivity over the M_{μ} range up to 185 GeV/c² next year.

MSSM Higgs sector : h, H, A, H[±]

Neutral MSSM Higgs(es)

Direct searches sparticle searches have low sensitivity to $\tan\beta$ and m(A) parameters of MSSM

Higgs searches provide highest sensitivity on these parameters Already significant coverage from $A \rightarrow \tau \tau$

As we become sensitive to light higgs below 135-140 GeV more and more of the plane will be covered

Charged MSSM Higgs

The selections are similar in ATLAS and CMS.

Selection in the Fully Hadronic channel is based on 1 tau jet,≥4 jets (≥1 b-tag), large MET.

1/2 Lepton channel: 1/2 leptons, ≥3 jets (≥1 b-tag), MET

QCD multijet background Data Driven.

Charged MSSM Higgs

Elzbieta Richter-Was

Plan

- Amazing how much could have been done with data accumulated in 2010-2011: numbers of results are still in the pile-line but already theory is being tested quantitatively.... and is holding its own (unfortunately)
- Some hints about SM Higgs boson with 5fb⁻¹..... so waiting now for more data in 2012
- Data of 2011 with 5fb⁻¹ to be fully explored still 18.01 What's new from New Physics searches?

The Standard Model cross-sections measurements in 2011

- The amount of data allowed measurements of "rare" physics processes:
 - In ~70 trillion pp collisions, ~40 ZZ → 41 events are produced
- Good agreement with the Standard Model expectations

ATLAS Detector

THE ATLAS DETECTOR IS REALLY BIG!

- Length : $\sim 46~{\rm m}$
- Radius : \sim 12 m
- Weight : ~ 7000 tons
- $\sim 10^8$ electronic channels
- $\bullet~3000~{\rm km}$ of cables

Transverse momentum

(in the plane perpendicular to the beam)

 $p_T = p \sin \theta$

$$90^{\circ} \rightarrow \eta = 0$$

$$\begin{array}{l} \theta = 10^{\circ} \quad \rightarrow \ \eta \cong 2.4 \\ \theta = 170^{\circ} \ \rightarrow \ \eta \cong -2.4 \end{array}$$

 $\Theta =$

ATLAS Inner Detector

The inner detector $|\eta| < 2.5$ consists of • Pixel detectors, semi-conductor

- Pixel detectors, semi-conductor tracker (SCT), transition radiation tracker
 - ≈ 87 million readout channels
 - Immersed in 2T solenoidal magnetic field

• Resolution of $\sigma/p_T = 5 \times 10^{-4} \oplus 0.015$

ATLAS Calorimeters

Electromagnetic and hadronic calorimeters

- Subsystem technology and granularity \leftrightarrow shower characteristics
- Transverse and longitudinal sampling \approx 200000 readout cells up to $|\eta| < 4.9$

Electromagnetic Calorimeters:

- Fine granularity $\Delta \eta \times \Delta \phi =$ 0.025×0.025 in central region
- Energy resolution $10\%/\sqrt{E}$

Hadronic Calorimeters:

- Granularity $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ in central region, less segmented in forward region
- Energy resolution $50\%/\sqrt{E} \oplus 0.03$