Physics with first fb⁻¹ at Large Hadron Collider

Today: Physics with top quarks

News from HCP (Paris 2011)

Explanatory figure

Possible excess

some parameter

Elzbieta Richter-Was

Brief history of the top quark

- 1976: Discovery of Upsilon at Fermilab
 - Contains a 5th quark: the **b-quark**
 - Structure of the families suggested existence of the 6th quark: the top
- From here on the race to find top quark begun
 - Petra (e⁺e⁻): m_t > 23.3 GeV in 1984
 - Tristan (e^+e^-) in Japan: $m_t > 30.2 \text{ GeV}$ in late 80s
 - SPS (p pbar): discovery of W and Z in 1983
 - UA1: m_t > 44 GeV in 1988 (after having access in 1984 which they thought was evidence for the top)
 - LEP (e+e-): m_t > 45.8 GeV in 1990
 - UA2: m_t > 69 GeV which closed down channel
 - W→tb search closed down

Brief history of the top quark

- Searching again for ttbar production with top mass above W boson mass
 - 1992: first lower limits on top from CDF (m, > 91 GeV)
 - 1994: first lower limits on top from D0 (m_t > 131 GeV)
- Electroweak fits from LEP/SLS/Tevatron data:
 - 155 GeV < m_t < 185 GeV</p>
- Early 1994:

"Evidence for top at CDF"

Top-quark discovery

- February 24th 1995: Simultaneus submission of top discovery papers to PRL by CDF and D0
 - 50 pb⁻¹ at D0
 - $m_t = 199 \pm 30 \text{ GeV}$
 - $\sigma_{tt} = 6.4 \pm 2.2 \text{ pb}$
 - Background-only hypothesis rejected at 4.6σ
 - 67 pb⁻¹ at CDF
 - $m_t = 176 \pm 13 \text{ GeV}$
 - $\sigma_{tt} = 6.8^{+3.6}$ pb
 - Background-only hypothesis rejected at 4.8σ

Top quark mass measurement

Single top-quark production

- 2009: Observation of top quarks in single top production
 5₀ by CDF & D0!
- Single top: very challenging channel
 - Low signal: similar signature like
 W+jets!
 - Counting only: Uncertainty on background larger than expected signal

Ranked Combination Output

Final Discriminant

Where we are today?

Tevatron:

- Roughly 1000s of events
- Precision measurements of production cross-section
- Observation in single top
- Precise study of top properties
- Searches for new physics using top quarks

Top-quark pair production Most properties measured in tt events At Tevatron: proton g 00000 a + 15% 85% At LHC: antiproton 14 TeV: 10% +90%7 TeV: 15% +85%

Production cross section (@Tevatron): approximate NNLO: $\sigma = 7.46^{+0.48}_{-0.67} pb$ @ m_t=172.5GeV

• 20 times higher @LHC (7TeV): $\sigma = 164.6^{+11.4}_{-15.7} pb$

Final states in ttbar

 $t\bar{t} \rightarrow W^+bW^-\bar{b}$: Final states are classified according to W decay

B(t→W⁺b)=100%

Top Pair Branching Fractions

pure hadronic: ≥6 jets (2 b-jets)

What we study about top-quark?

Measurements from Tevatron

Property	Measurement	SM Prediction	Luminosity (fb ⁻¹)
$\sigma_{t\bar{t}}$ (for $M_t = 172.5$ GeV)	CDF: $7.5 \pm 0.31(\text{stat}) \pm 0.34(\text{syst}) \pm 0.15(\text{theory}) \text{ pb}$	$7.46^{+0.48}_{-0.67} { m ~pb}$	up to 4.6
	D0: $7.56^{+0.63}_{-0.56}$ (stat + syst + lumi) pb		5.6
σ_{tbq} (for $M_t = 172.5$ GeV)	CDF: 0.8 ± 0.4 pb ($M_t = 175$ GeV)	$2.26\pm0.12~\rm{pb}$	3.2
	D0: 2.90 ± 0.59 pb		5.4
$\sigma_{\mathbf{tb}}$ (for $M_t = 172.5$ GeV)	CDF: $1.8^{+0.7}_{-0.5}$ pb ($M_t = 175$ GeV)	$1.04\pm0.04~\rm pb$	3.2
	D0: $0.68^{+0.38}_{-0.35}$ pb		5.4
Charge asymmetry	CDF: 0.158 ± 0.074	0.06	5.3
	D0: 0.196 ± 0.065		5.4
spin correlation	CDF: $0.72 \pm 0.64(\text{stat}) \pm 0.26(\text{syst})$	$0.777^{+0.027}_{-0.042}$	5.3
	D0: $0.66 \pm 0.23(\text{stat} + \text{sys})$		5.4
M_t	Tev: 173.2 ± 0.9 GeV	-	up to 5.8
$\sigma_{t\bar{t}\gamma}$	CDF: 0.18 ± 0.08 pb	$0.17\pm0.03~\rm{pb}$	6.0
V _{tb}	CDF: $ V_{tb} = 0.91 \pm 0.11(\text{stat} + \text{sys}) \pm 0.07(\text{theory})$	1	3.2
	D0: $ V_{tb} = 1.02^{+0.10}_{-0.11}$		5.4
$R = B(t \to Wb)/B(t \to Wq)$	CDF: > 0.61 @ 95% CL	1	0.2
	D0: 0.90 ± 0.04		5.4
$\sigma(gg ightarrow tar{t})/\sigma(par{p} ightarrow tar{t})$	CDF: $0.07^{+0.15}_{-0.07}$	0.18	1
$M_t - M_{\bar{t}}$	CDF: -3.3 ± 1.4 (stat) ± 1.0 (syst) GeV	0	5.6
	D0: $0.8 \pm 1.8(\text{stat}) \pm 0.5(\text{syst}) \text{ GeV}$		3.6
W helicity fraction	Tev: $f_0 = 0.732 \pm 0.063 (\text{stat}) \pm 0.052 (\text{syst})$	0.7	up to 5.4
Charge	CDF: -4/3 excluded @ 95% CL	2/3	5.6
	D0: 4/3 excluded @ 92% CL		0.37
Γ_t	CDF: < 7.6 GeV @ 95% CL	1.26 GeV	4.3
	D0: $1.99^{+0.69}_{-0.55}$ GeV		up to 2.3

Top quark width

- Top lifetime ~5x10⁻²⁵s
 => Top quark decay width is 1.4 GeV
- Top width determination using l+jets events
- Direct: Reconstruct top mass \rightarrow fit templates

0.3<Γ<4.4 GeV @68% CL Γ<7.6 GeV @95% CL

 Indirect: Extract partial and total width from combination of R measurement and t-channel cross section

Partial width from t-channel cross section

PRL 105 232003

200

150

units

250

2-tag Lepton+Jets

____Γ_{top} = 1.5 GeV

 $-\Gamma_{top} = 10.0 \text{ GeV}$

 $-\Gamma_{top} = 20.0 \text{ GeV}$

L=4.3 fb⁻¹

300 35 M^{reco} (GeV/c²)

Most precise determination of top width!

PRL 106, 022001 (2011)

Top quark charge

- Exotic model with top charge -4/3 e could be possible (SM: +2/3e)
- Use I+jets events with at least 2 b-tagged jets
- Kinematic fit: Which W belongs to which jet?

Top quark mass

- Free parameter of the SM
- Together with W mass: puts constraint on Higgs mass

Template method, ideogram, matrix element, etc.

Top-quarks at LHC

LHC: since 2010 new top factory

- Already now 10-100ks of events!
- Already now some measurements limited by systematics

Top event reconstruction: all hadronic

- if I b-tag in triplet take two jets with no b-tag to build W mass
- if 2 b-tags in triplet drop the event
- \Box if no b-tag take two jets with min ΔR

ATLAS-CONF-2011-033

Simple reconstruction - hadronic top

m_{top}=172.5 GeV top, m =172.5 GeV

W+jets

150

WW.ZZ.WZ

L = 35 pb

200

mwee [GeV]

250

ATLAS Frelimina

Events / 10 GeV

30

25

20

15

10

5

0

□ take three highest p_T jets to build top mass

D W mass window cut: 60<mw<100 GeV

45%(36%) of correctly reconstructed W(top)

- Ioss of efficiency
- jet resolutions are not taken into account
- ATLAS-CONF-2011-033

- if I b-tag in triplet take two jets with no b-tag to build W mass
- if 2 b-tags in triplet drop the event
- \Box if no b-tag take two jets with min ΔR

100

50

Simple reconstruction - hadronic top

 \square consider light jets pair with 50<mw<100 GeV

- combine with b-tagged jet
- \square select combination with highest p_T as a top quark candidate

perform kinematic fit of hadronic W candidate

$$\chi^{2}(\alpha_{1},\alpha_{2}) = \left[\frac{E_{1}(1-\alpha_{1})}{\sigma_{1}}\right]^{2} + \left[\frac{E_{2}(1-\alpha_{2})}{\sigma_{2}}\right]^{2} + \left[\frac{M_{12}(\alpha_{1},\alpha_{2})-m_{W}}{\Gamma_{W}}\right]^{2}$$

E

E₂

M12

ATLAS-CONF-2011-120

determines α₁ and α₂
 recalibrates jet energies
 improves m_t resolution

$\Box \chi^2$ minimization

□ takes into account reconstructed objects resolutions in pT
 □ approximates W and top Breit-Wigner lineshapes with Gaussians
 □ minimized with respect to all parton level kinematic quantities and m_t^{rec} for each jet-to-parton assignment

$$\begin{split} \chi^2 &= \frac{(m_{jj} - M_W)^2}{\Gamma_W^2} + \frac{(m_{\ell\nu} - M_W)^2}{\Gamma_W^2} + \frac{(m_{jjb} - m_t^{rec})^2}{\Gamma_t^2} + \frac{(m_{\ell\nu b} - m_t^{rec})^2}{\Gamma_t^2} \\ &+ \sum_{i=\ell, 4jets} \frac{(p_T^{i,fit} - p_T^{i,meas})^2}{\sigma_i^2} + \sum_{j=x,y} \frac{(p_j^{UE,fit} - p_j^{UE,meas})^2}{\sigma_{UE^2}} \end{split}$$

definition in all hadronic channel is similar

$\Box \chi^2$ minimization

- \square takes into account reconstructed objects resolutions in p_T
- approximates W and top Breit-Wigner lineshapes with Gaussians
 minimized with respect to all parton level kinematic quantities
 - and m_t^{rec} for each jet-to-parton assignment

$$\chi^{2} = \frac{(m_{jj} - M_{W})^{2}}{\Gamma_{W}^{2}} + \frac{(m_{\ell\nu} - M_{W})^{2}}{\Gamma_{W}^{2}} + \frac{(m_{jjb} - m_{t}^{rec})^{2}}{\Gamma_{t}^{2}} + \frac{(m_{\ell\nu b} - m_{t}^{rec})^{2}}{\Gamma_{t}^{2}} + \sum_{i=\ell,4jets} \frac{(p_{T}^{i,fit} - p_{T}^{i,meas})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(p_{j}^{UE,fit} - p_{j}^{UE,meas})^{2}}{\sigma_{UE^{2}}}$$

definition in all hadronic channel is similar

more sophisticated X² minimization - HitFit
 uses Transfer Functions to correct reconstructed objects to parton level
 loose cut on hadronic W mass: 40 GeV<mw<140 GeV before the fit to reject some permutations

S.Snyder, Ph.D. thesis, SUNY, Stony Brook, 1995

Matrix element method

- Use full event kinematics → most precise method
- For each event calculate probability to belong to certain top mass $P_{sig}(x;m_{f}) \propto \int PDF x Matrix element x Transfer function$

- Perform likelihood fit of event probabilities
- Probability depends on top mass (& JES for in-situ fit)
- Used in I+jets & dilepton final states

G Kinematic Likelihood fitter (KLfitter)

Transfer Functions to correct reconstructed objects to parton level:

 energies and angles of light and b-jets
 the energy of the charged lepton
 two components of the missing E_T

 b-tagging information can be use as a cut or as a weight

Template method

- Construct mass dependent template, fit to data
- Alljets and I+jets: Take info from hadronically decaying W mass to constrain jet energy scale

- Dilepton: Construction of templates more complicated due to presence of two neutrinos
 - Neutrino weighting, Matrix Weighting,...

Top-quark mass combinations

PIC2011 status

Systematics limited!

- Main effort for experiments: detailed understanding of systematics
- Main systematics at Tevatron: JES-related
- Main systematics at LHC: JESrelated and ISR/FSR
- Tevatron combination: first time uncertainty below 1GeV!

Top mass with ATLAS

- Analysis performed with 0.70 fb⁻¹ in l+jets channel,
 - asking the presence of one b-jet
- 3-jet from hadronic top: combination with higher total p_T
- Technique: m_{top} and JES determined simultaneously
 - W mass and width used as constraints
- m_{top}^{reco} in data have been compared to signal + backgrounds templates with ≠ JES and m_{top}
 - m_{top} and JES from a likelihood fit

- Main systematics:
 - signal modelling
 - JES for light jets and b-jets

ATLAS-CONF-2011-120

Future precision: Tevatron

- Each experiment is expected to achieve uncertainty of 0.9-1.0 GeV with the full dataset
- Tevatron combination is expected to have uncertainty of 0.7-0.8 GeV

Top quark mass: what we measure?

- What is theoretical interpretation of the measured parameter?
 - We extract top mass based on Monte Carlo \rightarrow is it the pole mass?
- Alternative method: extract mass form the measured cross-section for ttbar production
 - Assuming MC mass = pole mass or MSbar mass
 - Take difference as systematics
 - Calculate σ_{tt} as function of pole mass; compare to measured σ_{tt} as a function of pole mass
 - Extract pole mass:

```
\square m<sub>t</sub> = 167.5<sup>+5.2</sup><sub>-4.7</sub> GeV (D0)
```

 $\square m_{t} = 166.4^{+7.8} GeV (ATLAS, 35pb^{-1})$

Inclusive cross-section: I+jets pre-tag

- > Analysis with **0.70 fb**⁻¹.
- No b-tagging request applied
- Make use of kinematical differences between tī and W+jets:
 - likelihood discriminant based on 4 variables
 - lepton η, leading jet p_T, event aplanarity and transverse momentum of all jets but the two leading ones
- Fit in 6 channels: 3, 4 and >= 5jets in e and µ ch.
- Main systematics:
 - signal modelling (choice of signal MC generator, ISR/FSR) and jet energy scale (JES)

ATLAS-CONF-2011-121

Top mass from cross-section

- The result is not competitive in precision but:
 - Provides the top quark mass value in an exact definition of the masspole
 - Important cross-check, complementary to direct top mass measurements
- Likelihood fit on the mass dependence
- Uncertainty of the theory includes:
 - Variation of the renormalisation, factorisation scales
 - Error due to experimental uncertainties in the PDFs
 - Variation of the strong coupling constant in the PDF

Top anti-top mass difference

- Do top and anti-top have equal mass?
 - If not: CPT violation!
- Using template technique
 - CDF (Assume average top mass of 172.5GeV) m_t - m_t=-3.3±1.7GeV (5.6fb⁻¹) PRL 106, 161801
- Using Matrix Element technique (DØ)
 - P_{sig}(x;m_t, m_t) instead of P_{sig}(x;m_t) m_t - m_t=0.8±1.9GeV (3.6fb⁻¹) arXiv:1106.2063
- Still statistics limited
- Good agreement with the SM!

Top anti-top mass difference • Select events with a muon and multi-jet in the final state $\int_{0}^{0} \int_{0}^{0} \int_{0}^{1} \int_{0}^{1} dv = \int$

- The muon charge allows to split the data sample in two subsamples, where top or anti-top quarks decay hadronically
- Ideogram (approximate ME) method is used to measure mass of the top quarks.
- Many systematics cancel with the subtraction

World best limit!

 $\Delta m_t^{\text{measured}} = -1.20 \pm 1.21 \text{ (stat)} \pm 0.47 \text{ (syst) GeV}$

Jets multiplicity in tt events

- <u>Motivation</u>: jet multiplicity measurement gives the possibility to constrain ISR at m_{top} energy
- Analysis based on 0.70 fb⁻¹ in I+jets channel
- QCD and W+jets backgrounds estimated from data
- Jet multiplicity distribution after background subtraction compared to different MC predictions:
 - ISR varied within the uncertainty

- > Main uncertainties:
 - at low jet multiplicity (4 jets): QCD and W+jets backgrounds
 - at high jet multiplicity: JES

ttbar charge asymmetry: ppbar

- LO: No charge asymmetry expected
- NLO QCD: Interference between qq diagrams
- Tree level and box diagrams:
 - Positive asymmetry

- Initial and final state radiation:
 - Negative asymmetry

Sensitive to new physics, e. g. Z' & sensitive to theory modeling

ttbar charge asymmetry

Tevatron: pp̄ is CP eigenstate → pp (LHC) is not
 → different way to measure the effect at Tevatron and LHC

- LHC: qq
 fraction only 15% → asymmetry smaller than at Tevatron
- Requires reconstruction of $t\bar{t}$ system \rightarrow Kinematic fitter
- All experiments: results in I+jets; CDF: result in dilepton

ttbar charge asymmetry: ppbar

ttbar charge asymmetry: ppbar

- Measurements at LHC already becoming systematics limited
 - Mainly modeling of signal
- CMS: using η instead of y
 - Another measurement done using $\Delta(y^2)$

W helicity in top quarks decay

Left-handed coupling of W-boson to fermions:
 ^ℓ
 Not every combination of spin for W and b-quark is allowed

 Measure angle θ* between down-type decay product (lepton, d-, s-quark) of W and top quark in W rest frame

W helicity in top quarks decay

- Template fit of cos0* in I+jets and dilepton
 - f₁, f₀, f₁; in dilepton f₁ fixed
- Float f_{_}, f₀, f₊ with f₊+f₀+f₊=1 (l+jets): f₀=0.57±0.07(stat)±0.09(syst) f₊=0.09±0.04(stat)±0.08(syst)
- Fix f₊=0; combined dilepton & l+jets:
 f₀=0.75±0.08(stat+syst)
- Systematics limited; main systematics → modeling of signal & ISR/FSR
- Consistent with SM prediction

FCNC in top decays

No FCNC in SM → any indication of FCNC would mean new physics

- Look at events with 3 leptons
 - DØ (4.1fb⁻¹) Limit: B(t→Zq)<3.2%</p>
 - World's best limit

PLB 701, 313 (2011)

Single top production

Top quark production via weak interactions

cross sections at LHC with $\sqrt{s} = 7$ TeV (m_t = 173 GeV)64.2 ± 2.6 pb15.6 ± 1.3 pb4.6 ± 0.2 pb

cross sections at the Tevatron with $\sqrt{s} = 1.96$ TeV (m_t = 173 GeV)

2.1 ± 0.1 pb 0.25 ± 0.03 pb 1.05 ± 0.05 pb

Why look for single top quarks?

- Test of the SM predictions
 - Does it exist? YES
 - Establish different channels separately
 - Cross-section ~ $|V_{tb}|^2$
 - Test unitarity of the CKM matrix, e.g. hints for existent of the 4-th generation
 - Test of b-quark PDF: DGLAP evolution?
- Search for non-SM phenomena

 $V_{ub}^2 + V_{cb}^2 + V_{tb}^2 \stackrel{?}{=} 1$

t-channel analyses

- Largest cross section of single-top processes
- Improved S/B ratio (≈10%) compared to Tevatron (≈7%)

Wt channel analyses

Two channels according to W decay modes:

- Dilepton channel both W: W → ev or W → μv → 2 charged leptons, E_T^{miss}, 1 b-jet
- 2) Lepton + jets channel W \rightarrow ev or W \rightarrow μ v + W \rightarrow qqbar
 - ➔ 1 charged lepton, E_T^{miss}, 3 jets

Wt channel: I+jets

Experimental signature:

- Isolated charged lepton
- Missing transverse energy
- Three high-p_T jets
- Event selection very similar to t-channel analysis, same background estimation strategy

Analysis of 2010 data with 35 pb⁻¹

- ATLAS-CONF-2011-27 (Moriond 2011)
- Obtain S/B = 4 6%
- Dilepton and lepton+jets channel were combined: observed limit at the 95% C.L.: σ (Wt) < 158 pb
- Multivariate analyses are in preparation.

Wt channel:dileptons

Good agreement with expected jet multiplicity distribution and kinematic distributions.

s-channel analysis

- Smallest cross section of all single-top processes. (antiquarks in the initial state needed)
- Signature similar to t-channel, but:
 - No forward jet.
 - Two central b-quark jets.
 - > Jet definition uses: $|\eta| < 2.5$.
 - Use double tagged events.
- First s-channel analysis at ATLAS using 0.70 fb⁻¹.

Selection	Signal	Background	S/\sqrt{B}
Preselection Only	104	153802	0.26
Number of tagged jets=2	18	415	0.88
$30 < m_{top, jet2} < 247 \text{ GeV/c}^2$	17	349	0.91
$p_T(jet1, jet2) < 189 \text{ GeV/c}$	17	346	0.91
$m_T(W) < 111 \text{ GeV/c}$	17	318	0.95
$0.43 < \Delta R(b - jet1, lepton) < 3.6$	17	308	0.97
$123 < m_{top, jet1} < 788 \text{ GeV/c}^2$	17	302	0.98
$0.74 < \Delta R(b - jet1, b - jet2) < 4.68$	16	269	0.98

ATLAS-CONF-2011-118

Cut-based analysis

s-channel analysis

Event yield after final selection:

	Final Selection
s-channel	16 ± 6
t-channel	33 ± 13
Wt	5 ± 3
tī	111 ± 47
W+jets	4 ± 5
Wc+jets	10 ± 8
Wcc+jets	14 ± 12
Wbb+jets	70 ± 51
Z+jets	1 ± 1
Diboson	4 ± 1
Multijets	17 ± 10
TOTAL Exp	285 ± 17
S/ \sqrt{B}	0.98
DATA	296

Statistical analysis: Profile likelihood

1000

Single top : summary

- Single top t-channel production has been observed at ATLAS (7.6o @ 0.7 fb⁻¹) and CMS (3.7 @ 35 pb⁻¹).
- Measured t-channel cross sections are in agreement with the SM ($64.2 \pm 2.6 \text{ pb}$).

With 0.70 fb⁻¹ (ATLAS) already systematically (~30%) limited (stat. unc. 10%).

```
FCNC search (ATLAS):
 σ<sub>FCNC</sub> < 17.3 pb @ 95% C.L.
```


First steps to measure subleading single-top processes:

- Wt @ CMS: 2.7σ σ (Wt) = 22 + 9 (stat. + syst.) pb
- σ (Wt) < 39 pb @ 95% C.L.</p>
- σ (s-chan.) < 26.5 pb @ 95% C.L.</p>

Summary

- Almost all what we knew one year ago about top quark came from Tevatron
 - Measurements in all possible final states
 - Measurements of numerous top quark properties
 - Pioneer searches and analysis techniques
 - Still providing legacy measurements
- ATLAS and CMS have already (within only 2 years!) performed a complete first survey of the phase-space of the top quark mass and properties. The results are:
 - Very competitive with TeVatron in precision
 - Better than TeVatron for limits
 - Systematics limited e.g. in the mass determination
 - In agreement with Standard Model expectations so far

Both the searches and precise measurements of its properties tell us that top-quark is a Standard Model particle (asymmetry ?)

E. Richter-Was

Plan

- Amazing how much could have been done with only 36pb⁻¹ data accumulated in 2010: numbers of results are still in the pile-line but already theory is being tested quantitatively.... and is holding its own (unfortunately)
 - 7.12 Diboson production and TGS couplings
 - **4.01** Higgs boson... where we are?
 - **18.01** What's new from New Physics searches?

ъJ

Property	Measurement	SM Prediction	Luminosity (fb ⁻¹)
$\sigma_{t\bar{t}}$ (for $M_t = 172.5$ GeV)	CDF: $7.5 \pm 0.31(\text{stat}) \pm 0.34(\text{syst}) \pm 0.15(\text{theory})$ pb	$7.46^{+0.48}_{-0.67} \text{ pb}$	up to 4.6
	D0: $7.56^{+0.63}_{-0.56}$ (stat + syst + lumi) pb		5.6
σ_{tbq} (for $M_t = 172.5$ GeV)	CDF: 0.8 ± 0.4 pb $(M_t = 175 \text{ GeV})$	$2.26\pm0.12~\rm{pb}$	3.2
	D0: 2.90 ± 0.59 pb		5.4
σ_{tb} (for $M_t = 172.5$ GeV)	CDF: $1.8^{+0.7}_{-0.5}$ pb ($M_t = 175$ GeV)	$1.04\pm0.04~\rm pb$	3.2
	D0: $0.68^{+0.38}_{-0.35}$ pb		5.4
Charge asymmetry	$\text{CDF: } 0.158 \pm 0.074$	0.06	5.3
	D0: 0.196 ± 0.065		5.4
spin correlation	CDF: $0.72 \pm 0.64(\text{stat}) \pm 0.26(\text{syst})$	$0.777^{+0.027}_{-0.042}$	5.3
	D0: $0.66 \pm 0.23(\text{stat} + \text{sys})$		5.4
M_t	Tev: 173.2 ± 0.9 GeV	-	up to 5.8
$\sigma_{t\bar{t}\gamma}$	CDF: 0.18 ± 0.08 pb	$0.17\pm0.03~ m pb$	6.0
V _{tb}	CDF: $ V_{tb} = 0.91 \pm 0.11 (\text{stat} + \text{sys}) \pm 0.07 (\text{theory})$	1	3.2
	D0: $ V_{tb} = 1.02^{+0.10}_{-0.11}$		5.4
$R = B(t \to Wb)/B(t \to Wq)$	CDF: > 0.61 @ 95% CL	1	0.2
	D0: 0.90 ± 0.04		5.4
$\sigma(gg o tar{t})/\sigma(par{p} o tar{t})$	$CDF: 0.07^{+0.15}_{-0.07}$	0.18	1
$M_t - M_{\bar{t}}$	CDF: -3.3 ± 1.4 (stat) ± 1.0 (syst) GeV	0	5.6
	D0: $0.8 \pm 1.8(\text{stat}) \pm 0.5(\text{syst}) \text{ GeV}$		3.6
W helicity fraction	Tev: $f_0 = 0.732 \pm 0.063(\text{stat}) \pm 0.052(\text{syst})$	0.7	up to 5.4
Charge	CDF: -4/3 excluded @ 95% CL	2/3	5.6
	D0: 4/3 excluded @ 92% CL		0.37
Γ_t	CDF: < 7.6 GeV @ 95% CL	1.26 GeV	4.3
	D0: $1.99^{+0.69}_{-0.55}$ GeV		up to 2.3

Good agreement with SM

Property	Measurement	SM Prediction	Lum		15	······································
$\sigma_{t\bar{t}}$ (for $M_t = 172.5$ GeV)	CDF: $7.5 \pm 0.31(\text{stat}) \pm 0.34(\text{syst}) \pm 0.15(\text{theory})$ pb	7.46 ^{+0.48} _{-0.67} pb	up to	>		(a)
	D0: $7.56^{+0.63}_{-0.56}$ (stat + syst + lumi) pb		5.6	ő	ŧ.	• Data(e+μ)
σ_{tbq} (for $M_t = 172.5$ GeV)	CDF: 0.8 ± 0.4 pb $(M_t = 175 \text{ GeV})$	$2.26\pm0.12~\rm{pb}$	3.2	0	10	.
	D0: 2.90 ± 0.59 pb		5.4	3	E	ττγ
$\sigma_{\mathbf{tb}}$ (for $M_t = 172.5$ GeV)	CDF: $1.8^{+0.7}_{-0.5}$ pb ($M_t = 175$ GeV)	$1.04\pm0.04~\rm pb$	3.2	ţs		Wγ+HF
	D0: $0.68^{+0.38}_{-0.35}$ pb		5.4	U)	5	Miec
Charge asymmetry	CDF: 0.158 ± 0.074	0.06	5.3	×		
	D0: 0.196 ± 0.065		5.4	ш		
spin correlation	CDF: $0.72 \pm 0.64(\text{stat}) \pm 0.26(\text{syst})$	$0.777^{+0.027}_{-0.042}$	5.3		0 20	40 60 80 100 120 140 160 180
	D0: $0.66 \pm 0.23(\text{stat} + \text{sys})$		5.4			Lepton E ₋ (GeV)
M_t	Tev: 173.2 ± 0.9 GeV		up to	0.0		
$\sigma_{t\bar{t}\gamma}$	CDF: 0.18 ± 0.08 pb	$0.17\pm0.03~\mathrm{pb}$	6.0			
[Ytb]	$ODF: v_{tb} = 0.91 \pm 0.11(stat + sys) \pm 0.07(theory)$	1	3.2			
	D0: $ V_{tb} = 1.02^{+0.10}_{-0.11}$		5.4			
$R = B(t \rightarrow Wb)/B(t \rightarrow Wq)$	CDF: > 0.61 @ 95% CL	1	0.2			
	D0: 0.90 ± 0.04		5.4			First evidence for tty
$\sigma(gg o tar{t})/\sigma(par{p} o tar{t})$	CDF: $0.07^{+0.15}_{-0.07}$	0.18	1			production
$M_t - M_{ar t}$	CDF: -3.3 ± 1.4 (stat) ± 1.0 (syst) GeV	0	5.6			production
	D0: $0.8 \pm 1.8(\text{stat}) \pm 0.5(\text{syst}) \text{ GeV}$		3.6			\rightarrow Well in agreement
W helicity fraction	Tev: $f_0 = 0.732 \pm 0.063(\text{stat}) \pm 0.052(\text{syst})$	0.7	up to	5.4		with SM
Charge	CDF: -4/3 excluded © 95% CL	2/3	5.6			with SH
	D0: 4/3 excluded @ 92% CL		0.37			
Γ_t	CDF: < 7.6 GeV @ 95% CL	1.26 GeV	4.3			
	D0: $1.99^{+0.69}_{-0.55}$ GeV		up to	2.3		

				<u></u>	
Property	Measurement	SM Prediction	Luminos	> 5⊧	(b) DO 546-1
$\sigma_{t\bar{t}}$ (for $M_t = 172.5$ GeV)	CDF: $7.5 \pm 0.31(\text{stat}) \pm 0.34(\text{syst}) \pm 0.15(\text{theory}) \text{ pb}$	$7.46^{+0.48}_{-0.67} \text{ pb}$	up to 4.6	și și	(D) DØ, 5.4 TD
	D0: $7.56^{+0.63}_{-0.56}$ (stat + syst + lumi) pb		5.6	č 4	
σ_{tbq} (for $M_t = 172.5$ GeV)	CDF: 0.8 ± 0.4 pb ($M_t = 175$ GeV)	$2.26\pm0.12~\rm{pb}$	3.2	ē	IV 1 > 0.70
	D0: 2.90 ± 0.59 pb		5.4	2 3	$ v_{tb} > 0.79$
σ_{tb} (for $M_t = 172.5$ GeV)	CDF: $1.8^{+0.7}_{-0.5}$ pb ($M_t = 175$ GeV)	$1.04\pm0.04~\mathrm{pb}$	3.2	ō	@ 95% C.L.
	D0: $0.68^{+0.38}_{-0.35}$ pb		5.4	5 2	
Charge asymmetry	CDF: 0.158 ± 0.074	0.06	5.3	t a	
	D0: 0.196 ± 0.065		5.4	ő 1	
spin correlation	CDF: $0.72 \pm 0.64(\text{stat}) \pm 0.26(\text{syst})$	$0.777^{+0.027}_{-0.042}$	5.3	₽ [
	D0: $0.66 \pm 0.23(\text{stat} + \text{sys})$		5.4	Գ	02 04 06 08 1
M_t	Tev: $173.2 \pm 0.9 \text{ GeV}$	-	up to 5.8	0	0.2 0.4 0.0 0.8 1
$\sigma_{t\bar{t}\gamma}$	CDF: $0.18 \pm 0.08 \text{ pb}$	$0.17\pm0.03~\rm pb$	6.0		 V ²
Vtb	CDF: $ V_{tb} = 0.91 \pm 0.11(\text{stat} + \text{sys}) \pm 0.07(\text{theory})$	1	3.2		Li L
	D0: $ V_{tb} = 1.02^{+0.10}_{-0.11}$		5.4		
$R = B(t \to Wb)/B(t \to Wq)$	CDF: > 0.61 @ 95% CL	1	0.2		Tight constraints
	D0: 0.90 ± 0.04		5.4		from Tevatron
$\sigma(gg o tar{t})/\sigma(par{p} o tar{t})$	CDF: $0.07^{+0.15}_{-0.07}$	0.18	1		
$M_t - M_{\bar{t}}$	CDF: -3.3 ± 1.4 (stat) ± 1.0 (syst) GeV	0	5.6		\rightarrow LHC should catch
	D0: $0.8 \pm 1.8(\text{stat}) \pm 0.5(\text{syst}) \text{ GeV}$		3.6		un soon
W helicity fraction	Tev: $f_0 = 0.732 \pm 0.063(\text{stat}) \pm 0.052(\text{syst})$	0.7	up to 5.4		up 50011
Charge	CDF: -4/3 excluded @ 95% CL	2/3	5.6		
	D0: 4/3 excluded @ 92% CL		0.37		
Γ_t	CDF: < 7.6 GeV @ 95% CL	1.26 GeV	4.3		
	D0: $1.99^{+0.69}_{-0.55}$ GeV		up to 2.3		

Property	Measurement	SM Prediction	Lumino		
$\sigma_{t\bar{t}}$ (for $M_t = 172.5$ GeV)	CDF: 7.5 ± 0.31 (stat) ± 0.34 (syst) ± 0.15 (theory) pb	7.46 ^{+0.48} _{-0.67} pb	up to 4.6	E 3000	Der t Data
	D0: $7.56^{+0.63}_{-0.56}$ (stat + syst + lumi) pb		5.6	eve	DØ, L=5.3 fb
σ_{tbq} (for $M_t = 172.5$ GeV)	CDF: 0.8 ± 0.4 pb ($M_t = 175$ GeV)	$2.26\pm0.12~\rm{pb}$	3.2	Z 2500	tī R=0.5
	D0: 2.90 ± 0.59 pb		5.4		tī R=0
$\sigma_{\mathbf{tb}}$ (for $M_i = 172.5 \text{ GeV}$)	CDF: $1.8^{+0.7}_{-0.5}$ pb ($M_t = 175$ GeV)	$1.04\pm0.04~\rm pb$	3.2	2000-	Background
	D0: $0.68^{+0.38}_{-0.35}$ pb		5.4	1500-	•
Charge asymmetry	CDF: 0.158 ± 0.074	0.06	5.3	1500	
	D0: 0.196 ± 0.065		5.4	1000-	
spin correlation	CDF: $0.72 \pm 0.64(\text{stat}) \pm 0.26(\text{syst})$	$0.777^{+0.027}_{-0.042}$	5.3		
	D0: $0.66 \pm 0.23(\text{stat} + \text{sys})$		5.4	500	
M _t	Tev: 173.2 ± 0.9 GeV	-	up to 5.8		······
$\sigma_{t\bar{t}\gamma}$	CDF: 0.18 ± 0.08 pb	$0.17\pm0.03~{ m pb}$	6.0	0-	
V _{tb}	CDF: $ V_{tb} = 0.91 \pm 0.11 (\text{stat} + \text{sys}) \pm 0.07 (\text{theory})$	1	3.2		0 1 ≥2 N
	D0: $ V_{tb} = 1.02^{+0.10}_{-0.11}$		5.4		тад
$R = B(t \to Wb)/B(t \to Wq)$	CDF: > 0.61 @ 95% CL	1	0.2		
	D0: 0.90 ± 0.04		5.4		World's best
$\sigma(gg \to t\bar{t})/\sigma(p\bar{p} \to t\bar{t})$	CDF: $0.07^{+0.15}_{-0.07}$	0.18	1		World 5 Dest
$M_t - M_{\overline{t}}$	CDF: -3.3 ± 1.4 (stat) ± 1.0 (syst) GeV	0	5.6		measurement of R
	D0: $0.8 \pm 1.8(\text{stat}) \pm 0.5(\text{syst}) \text{ GeV}$		3.6		\rightarrow limited by
W helicity fraction	Tev: $f_0 = 0.732 \pm 0.063(\text{stat}) \pm 0.052(\text{syst})$	0.7	up to 5.4		inniced by
Charge	CDF: -4/3 excluded @ 95% CL	2/3	5.6		systematics
	D0: 4/3 excluded @ 92% CL		0.37		
Γ_t	CDF: < 7.6 GeV @ 95% CL	1.26 GeV	4.3		
	D0: $1.99^{+0.69}_{-0.55}$ GeV		up to 2.3		

Property	Measurement	SM Prediction	Lumino		
$\sigma_{t\bar{t}}$ (for $M_t = 172.5$ GeV)	CDF: 7.5 ± 0.31 (stat) ± 0.34 (syst) ± 0.15 (theory) pb	7.46 ^{+0.48} _{-0.67} pb	up to 4.6	E 3000	Der t Data
	D0: $7.56^{+0.63}_{-0.56}$ (stat + syst + lumi) pb		5.6	eve	DØ, L=5.3 fb
σ_{tbq} (for $M_t = 172.5$ GeV)	CDF: 0.8 ± 0.4 pb ($M_t = 175$ GeV)	$2.26\pm0.12~\rm{pb}$	3.2	Z 2500	tī R=0.5
	D0: 2.90 ± 0.59 pb		5.4		tī R=0
$\sigma_{\mathbf{tb}}$ (for $M_i = 172.5 \text{ GeV}$)	CDF: $1.8^{+0.7}_{-0.5}$ pb ($M_t = 175$ GeV)	$1.04\pm0.04~\rm pb$	3.2	2000-	Background
	D0: $0.68^{+0.38}_{-0.35}$ pb		5.4	1500-	•
Charge asymmetry	CDF: 0.158 ± 0.074	0.06	5.3	1500	
	D0: 0.196 ± 0.065		5.4	1000-	
spin correlation	CDF: $0.72 \pm 0.64(\text{stat}) \pm 0.26(\text{syst})$	$0.777^{+0.027}_{-0.042}$	5.3		
	D0: $0.66 \pm 0.23(\text{stat} + \text{sys})$		5.4	500	
M _t	Tev: 173.2 ± 0.9 GeV	-	up to 5.8		······
$\sigma_{t\bar{t}\gamma}$	CDF: 0.18 ± 0.08 pb	$0.17\pm0.03~\rm pb$	6.0	0-	
V _{tb}	CDF: $ V_{tb} = 0.91 \pm 0.11 (\text{stat} + \text{sys}) \pm 0.07 (\text{theory})$	1	3.2		0 1 ≥2 N
	D0: $ V_{tb} = 1.02^{+0.10}_{-0.11}$		5.4		тад
$R = B(t \to Wb)/B(t \to Wq)$	CDF: > 0.61 @ 95% CL	1	0.2		
	D0: 0.90 ± 0.04		5.4		World's best
$\sigma(gg \to t\bar{t})/\sigma(p\bar{p} \to t\bar{t})$	$CDF: 0.07^{+0.15}_{-0.07}$	0.18	1		World 5 Dest
$M_t - M_{\overline{t}}$	CDF: -3.3 ± 1.4 (stat) ± 1.0 (syst) GeV	0	5.6		measurement of R
	D0: $0.8 \pm 1.8(\text{stat}) \pm 0.5(\text{syst}) \text{ GeV}$		3.6		\rightarrow limited by
W helicity fraction	Tev: $f_0 = 0.732 \pm 0.063(\text{stat}) \pm 0.052(\text{syst})$	0.7	up to 5.4		inniced by
Charge	CDF: -4/3 excluded @ 95% CL	2/3	5.6		systematics
	D0: 4/3 excluded @ 92% CL		0.37		
Γ_t	CDF: < 7.6 GeV @ 95% CL	1.26 GeV	4.3		
	D0: $1.99^{+0.69}_{-0.55}$ GeV		up to 2.3		

Property	Measurement	SM Prediction	Luminosity	0.07-	
$\sigma_{t\bar{t}}$ (for $M_t = 172.5$ GeV)	CDF: 7.5 ± 0.31 (stat) ± 0.34 (syst) ± 0.15 (theory) pb	$7.46^{+0.48}_{-0.67}$ pb	up to 4.6	0.07	Δ
	D0: $7.56^{+0.63}_{-0.56}$ (stat + syst + lumi) pb		5.6	0.06	Gluon-rich
$\sigma_{\mathbf{tbq}}$ (for $M_t = 172.5$ GeV)	CDF: 0.8 ± 0.4 pb ($M_t = 175$ GeV)	$2.26\pm0.12~\rm{pb}$	3.2	0.00	No-gluon
	D0: 2.90 ± 0.59 pb		5.4	80.05	i io gruon
$\sigma_{\mathbf{tb}}$ (for $M_t = 172.5$ GeV)	CDF: $1.8^{+0.7}_{-0.5}$ pb ($M_t = 175$ GeV)	$1.04\pm0.04~\rm pb$	3.2	U.05	111
	D0: $0.68^{+0.38}_{-0.35}$ pb		5.4	E	Children and Party a
Charge asymmetry	CDF: 0.158 ± 0.074	0.06	5.3	50.04	CDF Run II Preliminary
	D0: 0.196 ± 0.065		5.4	70.00	L dt≃1 fb ⁻¹
spin correlation	CDF: $0.72 \pm 0.64(\text{stat}) \pm 0.26(\text{syst})$	$0.777^{+0.027}_{-0.042}$	5.3	e 0.03	
	D0: $0.66 \pm 0.23(\text{stat} + \text{sys})$		5.4	E	
M_t	Tev: 173.2 ± 0.9 GeV	-	up to 5.8	₹0.02	
$\sigma_{t\bar{t}\gamma}$	CDF: 0.18 ± 0.08 pb	$0.17\pm0.03~\rm{pb}$	6.0	I I	
V _{tb}	CDF: $ V_{tb} = 0.91 \pm 0.11 (\text{stat} + \text{sys}) \pm 0.07 (\text{theory})$	1	3.2	0.01	No.
	D0: $ V_{tb} = 1.02^{+0.10}_{-0.11}$		5.4	F	
$R = B(t \to Wb)/B(t \to Wq)$	CDF: > 0.61 @ 95% CL	1	0.2	0[E 10 1E 20 2E 20 2E 40 4E E0
	D0: 0.90 ± 0.04		5.4		5 10 15 20 25 30 35 40 45 50
$\sigma(gg o tar{t})/\sigma(par{p} o tar{t})$	CDF: $0.07^{+0.15}_{-0.07}$	0.18	1	· · · · · · ·	Number of low p _T tracks
$M_t - M_{\bar{t}}$	CDF: -3.3 ± 1.4 (stat) ± 1.0 (syst) GeV	0	5. 6		
	D0: $0.8 \pm 1.8(\text{stat}) \pm 0.5(\text{syst}) \text{ GeV}$		3.6		
W helicity fraction	Tev: $f_0 = 0.732 \pm 0.063(\text{stat}) \pm 0.052(\text{syst})$	0.7	up to 5.4		Fraction won't be the
Charge	CDF: -4/3 excluded @ 95% CL	2/3	5.6		
	D0: 4/3 excluded @ 92% CL		0.37		same at LHC
Γ_t	CDF: < 7.6 GeV @ 95% CL	1.26 GeV	4.3		
	D0: $1.99^{+0.69}_{-0.55}$ GeV		up to 2.3		

Property	Measurement	SM Prediction	Luminosity (fb ⁻¹)	
$\sigma_{t\bar{t}}$ (for $M_t = 172.5$ GeV)	CDF: $7.5\pm0.31(\mathrm{stat})\pm0.34(\mathrm{syst})\pm0.15(\mathrm{theory})~\mathrm{pb}$	$7.46^{+0.48}_{-0.67} { m ~pb}$	up to 4.6	
	D0: $7.56^{+0.63}_{-0.56}$ (stat + syst + lumi) pb		C F	
σ_{tbq} (for $M_t = 172.5$ GeV)	CDF: 0.8 ± 0.4 pb $(M_t = 175 \text{ GeV})$	$2.26\pm0.12~\rm{pb}$	≥ (b)	DØ 3.6 fb
	D0: 2.90 ± 0.59 pb		G ¹⁸⁰	μ+jets
σ_{tb} (for $M_t = 172.5$ GeV)	CDF: $1.8^{+0.7}_{-0.5}$ pb ($M_t = 175$ GeV)	$1.04\pm0.04~\rm pb$		
	D0: $0.68^{+0.38}_{-0.35}$ pb		Ε	
Charge asymmetry	CDF: 0.158 ± 0.074	0.06	175	
	D0: 0.196 ± 0.065			
spin correlation	CDF: $0.72 \pm 0.64(\text{stat}) \pm 0.26(\text{syst})$	$0.777^{+0.027}_{-0.042}$	· · · · ·	
	D0: $0.66 \pm 0.23(\text{stat} + \text{sys})$		170	
M_t	Tev: 173.2 ± 0.9 GeV	-	170	
$\sigma_{t\bar{t}\gamma}$	CDF: 0.18 ± 0.08 pb	$0.17\pm0.03~\rm{pb}$	5 X X X X X	
V _{tb}	CDF: $ V_{tb} = 0.91 \pm 0.11 (\text{stat} + \text{sys}) \pm 0.07 (\text{theory})$	1	170	175 190
	D0: $ V_{tb} = 1.02^{+0.10}_{-0.11}$		170	175 180
$R = B(t \to Wb)/B(t \to Wq)$	CDF: > 0.61 @ 95% CL	1		m, (GeV)
	D0: 0.90 ± 0.04		5.4	
$\sigma(gg o tar{t})/\sigma(par{p} o tar{t})$	CDF: $0.07^{+0.15}_{-0.07}$	0.18	1	First time done at
$M_t - M_{\bar{t}}$	CDF: -3.3 ± 1.4 (stat) ± 1.0 (syst) GeV	0	5.6	
	D0: $0.8 \pm 1.8(\text{stat}) \pm 0.5(\text{syst}) \text{ GeV}$		3.6	levatron
W helicity fraction	Tev: $f_0 = 0.732 \pm 0.063(\text{stat}) \pm 0.052(\text{syst})$	0.7	up to 5.4	\rightarrow statistics limited
Charge	CDF: -4/3 excluded @ 95% CL	2/3	5.6	
	D0: 4/3 excluded @ 92% CL		0.37	\rightarrow CMS recently
Γ_t	CDF: < 7.6 GeV @ 95% CL	1.26 GeV	4.3	released more
	D0: $1.99^{+0.69}_{-0.55}$ GeV		up to 2.3	
				precise result

Property	Measurement	
$\sigma_{t\bar{t}}$ (for $M_t = 172.5$ GeV)	CDF: 7.5 ± 0.31 (stat) ± 0.34 (syst) ± 0.15 (theory) pb	
	D0: $7.56^{+0.63}_{-0.56}$ (stat + syst + lumi) pb	
σ_{tbq} (for $M_t = 172.5$ GeV)	CDF: 0.8 ± 0.4 pb ($M_t = 175$ GeV)	CDF + DØ preliminary combination
	D0: 2.90 ± 0.59 pb	1 L = 2.7 - 5.4 fb ⁻¹
$\sigma_{\mathbf{tb}}$ (for $M_t = 172.5$ GeV)	CDF: $1.8^{+0.7}_{-0.5}$ pb ($M_t = 175$ GeV)	• Combined result
	D0: $0.68^{+0.38}_{-0.35}$ pb	0.8 * SM value
Charge asymmetry	CDF: 0.158 ± 0.074	• CDF I+jets
	D0: 0.196 ± 0.065	0.6 DF dilepton
spin correlation	CDF: $0.72 \pm 0.64(\text{stat}) \pm 0.26(\text{syst})$	68% and 95% △ DØ
	D0: $0.66 \pm 0.23(\text{stat} + \text{sys})$	0.4 C.L. contours
M_t	Tev: 173.2 ± 0.9 GeV	
o tty	CDF: 0.18 ± 0.08 pb	0.2
V _{tb}	CDF: $ V_{tb} = 0.91 \pm 0.11(\text{stat} + \text{sys}) \pm 0.07(\text{theory})$	
	D0: $ V_{tb} = 1.02^{+0.10}_{-0.11}$	0 Boundary of allowed ration
$R = B(t \to Wb)/B(t \to Wq)$	CDF: > 0.61 @ 95% CL	Boundary of allowed region
	D0: 0.90 ± 0.04	-0.2 0 0.2 0.4 0.6 0.8 1
$\sigma(gg o tar{t})/\sigma(par{p} o tar{t})$	CDF: $0.07^{+0.15}_{-0.07}$	· · · · · · · · · · · · · · · · · · ·
$M_t - M_{\bar{t}}$	CDF: -3.3 ± 1.4 (stat) ± 1.0 (syst) GeV	'+
	D0: $0.8 \pm 1.8(\text{stat}) \pm 0.5(\text{syst}) \text{ GeV}$	3.0 Coord a group out with
W helicity fraction	Tev: $f_0 = 0.732 \pm 0.063(\text{stat}) \pm 0.052(\text{syst})$	0.7 up to 5.4 Good agreement with
Charge	CDF: -4/3 excluded @ 95% CL	2/3 5.6 SM
	D0: 4/3 excluded @ 92% CL	
Γ_t	CDF: < 7.6 GeV @ 95% CL	1.26 GeV 4.3 → Equal statistics
	D0: $1.99^{+0.69}_{-0.55}$ GeV	up to 2.3 and systematics erro

Property	Measurement	SM Prediction	Luminosity (fb ⁻¹)	
$\sigma_{\rm eff}$ (for $M_{\rm e} = 172.5 {\rm GeV}$)	CDF: $7.5 \pm 0.31(\text{stat}) \pm 0.34(\text{syst}) \pm 0.15(\text{theory})$ pb	7.46 ^{+0.48} pb	up to 4.6	
	D0: $7.56^{+0.63}_{-0.62}$ (stat + syst + lumi) pb	-0.67 P	5.6	
σ_{tbg} (for $M_t = 172.5$ GeV)	CDF: 0.8 ± 0.4 pb ($M_t = 175$ GeV)	2.26 ± 0.12 pb		CDF Run II preliminary L = 5.6 fb ⁻¹
	D0: 2.90 ± 0.59 pb		180	
σ_{tb} (for $M_t = 172.5$ GeV)	CDF: $1.8^{+0.7}_{-0.5}$ pb ($M_t = 175$ GeV)	1.04 ± 0.04 pb	100	W+HF Mistag
	D0: $0.68^{+0.38}_{-0.35}$ pb		160	Single Top
Charge asymmetry	CDF: 0.158 ± 0.074	0.06	140	Diboson
	D0: 0.196 ± 0.065		120	QCD
spin correlation	CDF: $0.72 \pm 0.64(\text{stat}) \pm 0.26(\text{syst})$	0.777+0.027	<u>n</u>	tt events
	D0: $0.66 \pm 0.23(\text{stat} + \text{sys})$		100	- Data
M_t	Tev: 173.2 ± 0.9 GeV	- 0	80 SM like	XM like
σ _{tta}	CDF: 0.18 ± 0.08 pb	0.17 ± 0.03 pb		
Vtb	CDF: $ V_{tb} = 0.91 \pm 0.11(\text{stat} + \text{sys}) \pm 0.07(\text{theory})$	1	60	
	D0: $ V_{tb} = 1.02^{+0.10}_{-0.11}$		40	
$R = B(t \to Wb)/B(t \to Wq)$	CDF: > 0.61 @ 95% CL	1		· · · · ·
	D0: 0.90 ± 0.04		20	
$\sigma(gg o tar{t})/\sigma(par{p} o tar{t})$	CDF: $0.07^{+0.15}_{-0.07}$	0.18	0 -1.0 -0.5	0.0 0.5 1.0
$M_t - M_{\bar{t}}$	CDF: -3.3 ± 1.4 (stat) ± 1.0 (syst) GeV	0	G	Q(W) * Q(b-iet)
	D0: $0.8 \pm 1.8(\text{stat}) \pm 0.5(\text{syst}) \text{ GeV}$		3.0	
W helicity fraction	Tev: $f_0 = 0.732 \pm 0.063(\text{stat}) \pm 0.052(\text{syst})$	0.7	up to 5.4	
Charge	CDF: -4/3 excluded @ 95% CL	2/3	5.6	Confirmation of SI
	D0: 4/3 excluded @ 92% CL		0.37	
Γ_t	CDF: < 7.6 GeV @ 95% CL	1.26 GeV	4.3	charge
	D0: $1.99^{+0.69}_{-0.55}$ GeV		up to 2.3	

Property	Measurement	SM Prediction	Luminosity (fb ⁻¹)	
$\sigma_{t\bar{t}}$ (for $M_t = 172.5$ GeV)	CDF: 7.5 ± 0.31 (stat) ± 0.34 (syst) ± 0.15 (theory) pb	$7.46^{+0.48}_{-0.67} { m ~pb}$	up to 4.6	
	D0: $7.56^{+0.63}_{-0.56}$ (stat + syst + lumi) pb		56	
σ_{tbq} (for $M_t = 172.5$ GeV)	CDF: 0.8 ± 0.4 pb $(M_t = 175 \text{ GeV})$	2.26 ± 0	2-tag	Lepton+Jets
	D0: 2.90 ± 0.59 pb	<u>ද</u> 0.1		
$\sigma_{\mathbf{tb}}$ (for $M_t = 172.5 \text{ GeV}$)	CDF: $1.8^{+0.7}_{-0.5}$ pb ($M_t = 175$ GeV)	1.04 ± (S	· 25	
	D0: $0.68^{+0.38}_{-0.35}$ pb	ą	- L-1	$\Gamma = 1.5 \text{ GeV}$
Charge asymmetry	$\text{CDF: } 0.158 \pm 0.074$	0.06 ₹ 0.08	- F	1 top = 1.5 dev
	D0: 0.196 ± 0.065	-	11	
spin correlation	CDF: $0.72 \pm 0.64(\text{stat}) \pm 0.26(\text{syst})$	0.777^{+0}_{-0} 0.06	₽Ц	${top} = 10.0 \text{ GeV}$
	D0: $0.66 \pm 0.23(\text{stat} + \text{sys})$			
M_t	Tev: 173.2 ± 0.9 GeV	-		$-\Gamma_{top} = 20.0 \text{ GeV}$
$\sigma_{t\bar{t}\gamma}$	CDF: 0.18 ± 0.08 pb	0.17 ± (0.04	- 64 9	
V _{tb}	CDF: $ V_{tb} = 0.91 \pm 0.11 (\text{stat} + \text{sys}) \pm 0.07 (\text{theory})$	1	՝ բե ել	
	D0: $ V_{tb} = 1.02^{+0.10}_{-0.11}$	0.02	ւ դեն ել	
$R = B(t \to Wb)/B(t \to Wq)$	CDF: > 0.61 @ 95% CL	1 0.02	լ գ	h
	D0: 0.90 ± 0.04		d '	
$\sigma(gg o tar{t})/\sigma(par{p} o tar{t})$	CDF: $0.07^{+0.15}_{-0.07}$	0.18 0	150 20	0 250 200 250
$M_t - M_{\bar{t}}$	CDF: -3.3 ± 1.4 (stat) ± 1.0 (syst) GeV	0	150 20	U = 250 = 300 = 350 $M^{reco} (GeV/c^2)$
	D0: $0.8 \pm 1.8(\text{stat}) \pm 0.5(\text{syst}) \text{ GeV}$			
W helicity fraction	Tev: $f_0 = 0.732 \pm 0.063(\text{stat}) \pm 0.052(\text{syst})$	0.7	up to 5.4	
Charge	CDF: -4/3 excluded @ 95% CL	2/3	5.6	
	D0: 4/3 excluded @ 92% CL		0.37	Very precise indirec
Γ_t	CDF: < 7.6 GeV @ 95% CL	1.26 GeV	4.3	
	D0: $1.99^{+0.69}_{-0.55}$ GeV		up to 2.3	determination!

Sensitive searches from Tevatron

Tevatron inheritance to LHC era

- Which measurements can still compete with the new top factory?
- The secret lies in the differences:

Tevatron:LHC:Collision: $p\bar{p} \rightarrow CP$ eigenstate!Collision: ppEnergy: 1.96 TeVEnergy: 7 TeV85% q\overline{q} annihilation
15% gluon fusion15% q\overline{q} annihilation
85% gluon fusion

- Legacy: (Mainly) Analyses that explore the difference!
 - Different energies (& production type): Cross section (differential and total)
 - Different production types: Spin correlation & Forward backward Asymmetry
 - Well understood environment: Mass

Single top: t-channel

- DØ, 2011: Observation of t-channel single top production (5.5 SD significance)
 - $(p\bar{p} \rightarrow tqb + X) = 2.90 \pm 0.59 \text{ pb}$
 - Limited by systematics
- t-channel:
 - Needs very special selection (high jet η, low p_τ for soft b-jet)

Single top: s-channel

- Legacy with full dataset: s-channel
 - Only 4x higher production rate at LHC (even more background)
- So far:
 - DØ: Expected sensitivity with 5.4fb⁻¹ close to 3 sigma
 - CDF: sensitivity not calculated but about 3 sigma with 3.2fb⁻¹
 → With full dataset evidence³

per experiment doable

 CDF+DØ combination: At least evidence! Maybe observation?

-Channel Cross

Inclusive cross-section: $\mu + \tau$

- Motivation: decays like t→bH⁺ can enhance BR of final states involving τ-leptons
- > Analysis on 1.1 fb⁻¹, with one μ and one hadronically decaying τ
 - event selection: 1 μ, 1 τ-jet (with one track τ₁ and with three tracks τ₃) and two other jets, one of them passing b-tagging
- Boosted decision trees (BDT) used to identify τ's and reject electrons and jets
- Signal fractions from a fit on BDT_i
 - backgrounds templates using control samples in data
- Main systematics:
 - τ-identification,
 - ISR/FSR modelling
 - b-tagging

 $\sigma_{t\bar{t}} = 142 \pm 21 \text{ (stat.)} \pm \frac{20}{16} \text{ (syst.)} \pm 5 \text{ (lumi.)} \text{ pb}$

Inclusive cross-section: I+jets tag

- > Analysis based on **35 pb**⁻¹:
- Multivariate technique to separate signal from background
 - likelihood discriminant based on 4 variables
 - lepton η, event aplanarity, transverse momentum of all jets but the two leading ones, average b-tagging probability (considering the two jets with the lowest light jet probability)
- Fit in 6 channels: 3, 4 and ≥5 jets in e and µ channel
- Main systematics:
 - W+jets heavy flavour fraction
 - b-tagging calibration

Inclusive cross-section: dilepton

- Data corresponding to 0.70 fb⁻¹
- Two counting analysis with/without the request of a b-tagged jet
- > Main backgrounds estimated from data:
 - QCD
 - Z+jets

Inclusive cross-section: all hadronic

- Analysis based on 1.02 fb⁻¹
- Event selection
 - multi-jet trigger
 - at least 6 jets, 2 b-tagged
 - upper cut on E_T^{miss} significance: $E_T^{miss}/\sqrt{H_T}$
 - H_T = scalar sum of the transverse momentum of all jets in the event
 - minimal ΔR separation between the two b-jets: ΔR(b,b)> 1.2
- The signal fraction is extracted from a fit on χ² mass distribution using signal+background templates
 - signal: from MC
 - QCD: from data using control samples with exactly 4 or 5 jets

- Main systematics:
 - ISR/FSR modelling
 - JES

 $\sigma(pp \rightarrow t\bar{t}) = 167 \pm 18 \text{ (stat.)} \pm 78 \text{ (syst.)} \pm 6 \text{ (lum.) pb}$ 48% precision
LHC analyses

ATLAS Detector

THE ATLAS DETECTOR IS REALLY BIG!

- Length : $\sim 46~{\rm m}$
- $\bullet~{\rm Radius}$: $\sim~12~{\rm m}$
- Weight : ~ 7000 tons
- $\sim 10^8$ electronic channels
- $\bullet~3000~{\rm km}$ of cables

Transverse momentum

(in the plane perpendicular to the beam)

 $p_T = p \sin \theta$

$$= 90^{\circ} \rightarrow \eta = 0$$
$$= 10^{\circ} \rightarrow \eta \cong 2.4$$
$$= 170^{\circ} \rightarrow n \cong -2.4$$

θ

θ

θ

ATLAS Inner Detector

The inner detector $|\eta| < 2.5$ consists of • Pixel detectors, semi-conductor

- Pixel detectors, semi-conductor tracker (SCT), transition radiation tracker
 - ≈ 87 million readout channels
 - Immersed in 2T solenoidal magnetic field

• Resolution of $\sigma/p_T = 5 \times 10^{-4} \oplus 0.015$

ATLAS Calorimeters

Electromagnetic and hadronic calorimeters

- Subsystem technology and granularity \leftrightarrow shower characteristics
- Transverse and longitudinal sampling \approx 200000 readout cells up to $|\eta| < 4.9$

Electromagnetic Calorimeters:

- Fine granularity $\Delta \eta \times \Delta \phi =$ 0.025×0.025 in central region
- Energy resolution $10\%/\sqrt{E}$

Hadronic Calorimeters:

- Granularity $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ in central region, less segmented in forward region
- Energy resolution $50\%/\sqrt{E} \oplus 0.03$