Physics with first fb⁻¹ at Large Hadron Collider

Today: W,Z inclusive cross-section Asymmetry W+jets, Z + jets

News from last week(s)

 5.25 fb⁻¹ pp collisions recorded by ATLAS
 PbPb run of 2011 started

Bosons at LHC

- Well measured by previous experiments
 - Inclusive cross sections, R(W+/W-), R(W/Z)
 - Differential distributions, associated jet multiplicity, A_{FB}, etc.
- Yet still educational at the LHC
 - Cross sections at $\sqrt{(s)}$ =7TeV
 - New pdf constraints possible
- "Standard candles" for high-p_T analyses
 - Calibration, alignment
 - Independent luminosity measurements

Just departure point for high- $p_{\rm T}$ Beyond Standard Model analyses

The Standard Model

SM measurements are the foundations of all searches (33 papers on measurements to date)

Drell-Yan cross-section Keywords:

- factorisation μ_F and renormalisation μ_R scales
- universal parton distribution functions
- LO, NLO, NNLO matrix elements and DGLAP kernels

also depends on μ_R and μ_F , so as to cancel scale dependence in PDF's and α_s , to this order

$$\sigma_{AB} = \int dx_a dx_b \ f_{a/A}(x_a, Q^2) f_{b/B}(x_b, Q^2) \ \hat{\sigma}_{ab \to X}$$

$$dependence in PD to this order$$

$$\sigma_{AB} = \int dx_a dx_b \ f_{a/A}(x_a, \mu_F^2) \ f_{b/B}(x_b, \mu_F^2) \ \times \ [\ \hat{\sigma}_0 \ + \ \alpha_S(\mu_R^2) \ \hat{\sigma}_1 \ + \ \cdots \]_{ab \to X}.$$

All orders cross section has no dependence on μ_F and μ_R ; a residual dependence remains (to order α_s^{n+1}) for a finite order (α_s^n) calculations.

DGLAP equations

 Parton distributions used in hard scattering calculations are solutions of DGLAP equations

$$\begin{aligned} \frac{\partial q_i(x,\mu^2)}{\partial \log \mu^2} &= \frac{\alpha_S}{2\pi} \int_x^1 \frac{\mathrm{d}z}{z} \Big\{ P_{q_i q_j}(z,\alpha_S) q_j(\frac{x}{z},\mu^2) + P_{q_i g}(z,\alpha_S) g(\frac{x}{z},\mu^2) \Big\},\\ \frac{\partial g(x,\mu^2)}{\partial \log \mu^2} &= \frac{\alpha_S}{2\pi} \int_x^1 \frac{\mathrm{d}z}{z} \Big\{ P_{gq_j}(z,\alpha_S) q_j(\frac{x}{z},\mu^2) + P_{gg}(z,\alpha_S) g(\frac{x}{z},\mu^2) \Big\}, \end{aligned}$$

Splitting functions have perturbative expansions

$$P_{ab}(x, \alpha_S) = P_{ab}^{(0)}(x) + \frac{\alpha_S}{2\pi} P_{ab}^{(1)}(x) + \cdots$$

Thus, a full NLO calculation will contain both $\hat{\sigma}_1$ (previous slide) and $P_{ab}{}^{(1)}$

Altarelli-Parisi splitting functions

W/Z production

Cross sections for on-shell W and Z production (in narrow width limit) given

$$\begin{split} \hat{\sigma}^{q\bar{q}' \to W} &= \frac{\pi}{3} \sqrt{2} G_F M_W^2 |V_{qq'}|^2 \delta(\hat{s} - M_W^2), \\ \hat{\sigma}^{q\bar{q} \to Z} &= \frac{\pi}{3} \sqrt{2} G_F M_Z^2 (v_q^2 + a_q^2) \delta(\hat{s} - M_Z^2), \end{split}$$

$$\hat{s} = (p_1 + p_1)^2$$

$$\hat{t} = (p_1 + p_3)^2$$

$$\hat{u} = (p_1 + p_4)^2$$

$$p_4$$

$$p_1$$

$$p_2$$

$$p_3$$

Mandelstamm variables :

- Where V_{qq} is appropriate CKM matrix element and v_q and a_q are the vector and axial couplings of the Z to quarks
- At LO there is no α_s dependence; EW vertex only
- NLO contribution to the cross section is proportional to α_s ; NNLO to α_s^2 ; ...

$W/Z p_{T}$ distributions

 Most of W/Z produced at low p_T but can be produced at non-zero p_T due to the diagrams with emitted gluon

$$\begin{split} \sum |\mathcal{M}^{q\bar{q}' \to W_g}|^2 &= \pi \alpha_S \sqrt{2} G_F M_W^2 |V_{qq'}|^2 \frac{8}{9} \frac{\hat{t}^2 + \hat{u}^2 + 2M_W^2 \hat{s}}{\hat{t}\hat{u}} ,\\ \sum |\mathcal{M}^{gq \to Wq'}|^2 &= \pi \alpha_S \sqrt{2} G_F M_W^2 |V_{qq'}|^2 \frac{1}{3} \frac{\hat{s}^2 + \hat{u}^2 + 2\hat{t}M_W^2}{-\hat{s}\hat{u}} , \end{split}$$

- Sum over colors and spins in initial states and average over same in final states
- Transverse momentum distribution obtained by convoluting these matrix elements with pdf's in usual way

QCD resummation

- Resummation: reorganise calculations in terms of large Logs $L(Q^2/p_T^2)$; regularised at low p_T range;
- Different schemes: CSS which includes also non-perturbative effects; Sudakov form factors; exponentation;

Cross-section at LHC (7TeV)

$$\sigma_{Z/\gamma*\to\ell\ell}^{NNLO} = 0.989\,\mathrm{nb}$$

$\sigma(W^+) \neq \sigma(W^-)$

 W^+ production: $u\bar{d} + c\bar{s}$ W^- production: $d\bar{u} + s\bar{c}$ Z production: $u\bar{u} + d\bar{d} + s\bar{s} + c\bar{c} + b\bar{b}$

- Test QCD (up to NNLO) in production
 - Hard and soft gluon emission
- Sensitive to parton distribution functions
- Extract electroweak parameters
 - \Box sin Θ_w , m_w, quark-boson couplings

Monte Carlo simulations

Base-line generators:

- Pythia, Herwig (LO),
- MCatNLO (NLO)
- POWHEG (NLO)
- Used as components of for cross-checks
 - FEWZ: complete NLO, NNLL
 - ResBos: NNLL resumation
 - Horace: full 1-loop electroweak
 - PHOTOS:final state QED (exponentiated)

Event selection

 $W o \ell
u$

- One e/μ with $p_{\rm T} > 20~{\rm GeV}$
- $E_{\rm T}^{\rm miss} > 25 \,\,{\rm GeV}$
- $m_{\rm T}(\ell, E_{\rm T}^{\rm miss}) > 40 \,\,\mathrm{GeV}$

$Z \to \ell \ell$

• Two e/μ with $p_{\rm T}>20~{\rm GeV}$

•
$$m_{\ell\ell} = 66 - 116 \text{ GeV}$$

Event selection

Event selection

Missing transverse energy

- In pp collisions at the LHC, a significant, unmeasured amount of energy escapes in z direction
- Total initial and final momentum is zero in transverse direction
- Imbalance of energy in transverse direction signals presence of weakly or noninteracting particles such as neutrinos

QCD background estimation

- $W \rightarrow e\nu$: template fit to $E_{\rm T}^{
 m miss}$. Template derived from data with inverted electron ID and isolation.
 - $Z \rightarrow ee$: template fit to $m_{\ell\ell}$ to a sample with looser electron ID, extrapolated to the signal region.
- $W
 ightarrow \mu
 u$: matrix method using track isolation.

 $Z \rightarrow \mu \mu$: ABCD method with track isolation in $m_{\mu\mu}$ side-band.

Cross-section measurement

$$\sigma = \frac{N_{\rm obs} - N_{\rm bkg}}{A \cdot C \cdot \int dt \, \mathcal{L}}$$

 $N_{
m obs}$: number of observed events in the signal region $N_{
m bkg}$: estimated number of background events

- EW backgrounds are estimated with Monte Carlo, constrained to data with performance scale factors.
- QCD backgrounds are estimated with data-driven methods.
- A: kinematic acceptance factor, estimated with generator-level Monte Carlo.
- C: summarizes reconstruction efficiency, estimated with reconstructed Monte Carlo, corrected with scale factors.
- $\int dt \; \mathcal{L}$: integrated luminosity.

Scale factor: tag-and-probe studies

- "Tag" events with sufficient purity, leaving an unbiased "probe" object.
- Measure probe ID efficiency in situ.
- Constrains the performance of our object identification.
- Derive scale factors for correcting our simulation.

Systematic error

	$\delta\sigma_{W^{\pm}}$	$\delta \sigma_{W+}$	$\delta\sigma_W -$	$\delta \sigma_Z$
Trigger	0.4	0.4	0.4	$<\!0.1$
Electron reconstruction	0.8	0.8	0.8	1.6
Electron identification	0.9	0.8	1.1	1.8
Electron isolation	0.3	0.3	0.3	
Electron energy scale and resolution	0.5	0.5	0.5	0.2
Non-operational LAr channels	0.4	0.4	0.4	0.8
Charge misidentification	0.0	0.1	0.1	0.6
QCD background	0.4	0.4	0.4	0.7
Electroweak $+t\bar{t}$ background	0.2	0.2	0.2	$<\!0.1$
$E_{\rm T}^{\rm miss}$ scale and resolution	0.8	0.7	1.0	
Pile-up modeling	0.3	0.3	0.3	0.3
Vertex position	0.1	0.1	0.1	0.1
$C_{W/Z}$ theoretical uncertainty	0.6	0.6	0.6	0.3
Total experimental uncertainty	1.8	1.8	2.0	2.7
$A_{W/Z}$ theoretical uncertainty	1.5	1.7	2.0	2.0
Total excluding luminosity	2.3	2.4	2.8	3.3
Luminosity	3.4			

W, Z inclusive measurements

- Inclusive in number of jets, allow to reach high accuracy in QCD predictions.
- Computation available at NNLO on the total cross-section, at NNLO error dominated by PDF's

Theory comparison: total cross-section

- Overall remarkable agreement with NNLO PDF predictions
- A few differences between different PDFs (w/ only 68 % CL PDF errors)
- Comparing total cross sections, the acceptance uncertainty accounts for effect of different PDFs on the unmeasured phase space . . .

Theory comparison: total cross-section ratios

- W^{\pm}/Z , W^{+}/W^{-} ratios profit from exp. and theor. systematics cancellation
- W^{\pm}/Z ratio measured with total uncert. of 1.5%, W^{+}/W^{-} with 1.7%

Z boson p_{T} measurement

- Important for modeling high-p_T lepton kinematics.
- At leading order, $p_{\mathrm{T}}^{W/Z}=0$
- Non-zero $p_{\rm T}^{W/Z}$ is generated through the hadronic recoil of ISR, $p_{\rm T}^R$.
- p_{T}^{Z} reconstructed directly from $p_{\mathrm{T}}(\mu_{1}) + p_{\mathrm{T}}(\mu_{2})$, while p_{T}^{W} reconstructs p_{T}^{R} .
- Detector and FSR effects removed with a bin-by-bin unfolding.
- 3-4% precision per bin.

W boson p_T measurement

- Necessary for a future precision W mass measurement.
- Detector and FSR effects removed by inverting a response matrix parametrizing the probabilistic mapping of p_T^R to p_T^W.

W, Z boson p_{T} reweighting

- The modeling of $d\sigma/dp_{\rm T}^{W/Z}$ can have significant effects on the expected efficiency and acceptance.
- NLO generators MC@NLO and POWHEG have deficits at high $p_{\mathrm{T}}^{W/Z}$.
- NLO effects are important at high $p_{\rm T}^{W/Z}$ because the W/Z is polarized by higher order QCD.

• $W \to \ell \nu$ and $Z \to \ell \ell$ cross section measurements use MC@NLO reweighted to match $p_{\rm T}^{W/Z}$ for LO Pythia, which agrees with the data because it has been tuned well to the Tevatron data.

E. Richter-Was

8 November 2011

Z differential

- Inclusive production as a function of the Z pseudorapidity.
- Lepton flavours combined together taking into accoun all correlations.
- Z rapidity reaches |y|<3.5 with special electron reconstruction outside tracking volume (|y|<2.5)

W+- asymmetry

$$A(\eta_l) = \frac{\sigma^{W^+}(\eta_l) - \sigma^{W^-}(\eta_l)}{\sigma^{W^+}(\eta_l) + \sigma^{W^-}(\eta_l)}$$

 Asymmetry induced by the different flavours contributing to W⁺ and W⁻ production and by asymmetry in flavour content of pp interaction

Lepton universality

- $R_W = \frac{\sigma_W^e}{\sigma_W^{\mu}} = \frac{Br(W \to e\nu)}{Br(W \to \mu\nu)} = 1.006 \pm 0.004 \,(\text{sta}) \pm 0.006 \,(\text{unc}) \pm 0.023 \,(\text{cor}) = 1.006 \pm 0.024$ $\sigma_W^e = Br(Z \to ee)$
- $R_Z = \frac{\sigma_Z^e}{\sigma_Z^{\mu}} = \frac{Br(Z \to ee)}{Br(Z \to \mu\mu)} = 1.018 \pm 0.014 \,(\text{sta}) \pm 0.016 \,(\text{unc}) \pm 0.028 \,(\text{cor}) = 1.018 \pm 0.031$

$$R_w^{PDG} = 1.017 \pm 0.019$$

 $R_z^{PDG} = 0.991 \pm 0.0024$

$$R_W = g_e^2/g_{\mu}^2$$
 (neglecting loop correction)

$$R_{Z} = \frac{g_{e^{2}} (2 \sin \theta^{e_{W}} - 1) + 4 \sin^{2} \theta^{e_{W}}}{g_{\mu}^{2} (2 \sin \theta^{\mu}_{W} - 1) + 4 \sin^{2} \theta^{\mu}_{W}}$$

Incredible number of V+jets events at 7 TeV

$$E_T^{\mathsf{n}^{\mathsf{th}} \; \mathsf{jet}} > 25 \; \mathsf{GeV}$$

plus standard cuts on jet (anti- κ_T , R=0.4) rapidity, lepton, missing E_T

 $W^\pm \to e^\pm \nu$ or $\mu^\pm \nu$

 $Z^0
ightarrow e^+e^-$ or $\mu^+\mu^-$

$\int \mathcal{L} dt =$	2 fb ⁻¹
$\sigma(W^{\pm}j)pprox$ 800 pb	1,600,000
$\sigma(W^{\pm}jj)pprox$ 200 pb	400,000
$\sigma(W^{\pm}jjj)pprox$ 45 pb	90,000
$\sigma(Zj)pprox$ 80 pb	160,000
$\sigma(Zjj)pprox$ 20 pb	40,000
$\sigma(Zjjj)pprox$ 4.8 pb	9,600

V+jets dynamics at 7 TeV

- Can now easily get events with $E_T^{\rm jet} >> M_W$.
- "Soft W" enhancement → tend to be jet dominated.
 (b) preferred over (a).

W/Z + jets physics

- ✓ larger available energy than at Tevatron:
 => more jets; larger kinematic reach
 => cross sections spanning several orders of magnitude
- ✓ higher relevance of processes initiated by qg and gg scattering
 - => different contribution to the cross section compared to Tevatron
 - => processes with heavy flavour in the initial state become important
- compelling test for the new NLO pQCD calculations of W/Z+(b)jets (up to 4jet for light- and 2 for b-jets)

cross section x BR [nb]

10

10-1

10-2

W

Ζ

W/Z+jets

- cross section measured as a function of several kinematic variables (see end of this talk)
- very good agreement with NLO predictions from MCFM and Blackhat-Sherpa in the total and differential cross sections
- good agreement with matched LO prediction from AlpGen and Sherpa once normalized to the NNLO prediction
- Poor agreement with LO PYTHIA in the high jet multiplicity

dominant systematics

- ▶ JES: 8(26)% for $N_j \ge I(4)$
- ▶ jets from pile-up ≈7%
- Iep. reco. ≈ 2%
- QCD bkgd $\approx 2\%$
- unfolding $\approx 2\%$

Rjets = ratio W+1jet/Z+1jet

- This is the first time this ratio is measured
 - Sensitive to new physics
 - Very small sensitivity to PDG
 - CTEQ6.6: 0.5%
 - MSTW2008: 0.3%

$$R_{jets} (p_T > x) = \frac{\sigma_{W+1} \cdot jet(p_T > x)}{\sigma_{Z+1} \cdot jet(p_T > x)}$$

PDF uncertaintity on Rjets

Very small uncertaintity on PDF's CTEQ6.6: 0.5%, MSTW2008: 0.3%

W/Z + b-jets: b-tagging

- b-jets are selected exploiting the long lifetime (1.5 ps) and the large mass of B-hadrons
- The SV0 b-tagging algorithm is based on requiring a displaced secondary vertex reconstructed within a jet with a decay length significance > 5.85
- The b-tagging efficiency and its systematics is estimated by studying semi-leptonic B decays in QCD muti-jet events, and top events

Jet/Axis

Decay Length

Secondary Vertex

W/Z+bjets: backgrounds

The b-tag changes the composition of backgrounds with respect to W/Z+jet measurements

W/Z+bjets: extraction of bjets fraction

A maximum likelihood fit to the SV0 mass distribution is used to separate b-jets from c- and light-jets, and extract the flavour fraction on a statistical basis.

- SV0 mass template are modeled with MC
- template systematics: data vs. MC in multi-jet events enriched in light-, c-, and b-jets.

Z+b-jets: results

$$\sigma = \frac{N_b}{C_e \times \mathcal{L}_e + C_\mu \times \mathcal{L}_\mu}$$

- Inclusive b-jet production cross section in association with a Z boson
- Jet fitted yield is corrected for all detector effects with MC LO matched prediction for Zjet (including heavy flavour) from ALPGEN and SHERPA
- uncertainty: \approx 20% stat. and \approx 23% syst.
- dominant systematics:
 - b-tagging & SV mass template $\approx 10\%$
 - Z+b-jet modeling $\approx 10\%$
 - Jet + bjet energy scale ≈4%
- MCFM in good agreement with data within uncertainty

ALPGEN	2.23 ± 0.01 (stat only)pb
SHERPA	3.33 ± 0.04 (stat only) pb

W+b-jets: results

$$\sigma_{W+b-\text{jet}} \times \mathcal{B}(W \to \ell \nu) = \frac{n^{\text{tag}} \cdot f_{W+b-\text{jet}}}{\int L dt \cdot \mathcal{U}}$$

- W+b-jet cross section (event level)
- First measurement in exclusive jet bins
- event fitted yield is corrected for all detector effects with MC LO matched prediction for Wjet (including heavy flavour) from ALPGEN
- uncertainty: \approx 20% stat. and \approx 25% syst.
- dominant systematics:
 - b-tagging & SV mass template ≈ 16%
 - top background ≈12%
 - QCD background ≈7%
 - W+b-jet modeling $\approx 10\%$
 - Jet + bjet energy scale ≈7%

- NLO prediction obtained in the 5 flavour number scheme [F. Caola et al. arXiv:1107.3714]
- NLO agrees within 1.5σ with the measurements

	σ_{vis} [pb]
1 jet	$2.9^{+0.40}_{-0.36}$ (scale) $^{+0.18}_{-0.02}$ (PDF) $^{+0.19}_{-0.10}$ (m _b) \pm 0.20 (non-pert)
2 jet	$1.9^{+0.81}_{-0.37}$ (scale) $^{+0.14}_{-0.02}$ (PDF) $^{+0.06}_{-0.05}$ (m _b) \pm 0.13 (non-pert.)
$1{+}2$ jet	$4.8^{+1.20}_{-0.73}$ (scale) $^{+0.32}_{-0.03}$ (PDF) $^{+0.25}_{-0.15}$ (m _b) \pm 0.34 (non-pert.)

Summary

- The LHC era allowed us to verify QCD in new kinematic regimes, good testing ground for predictions
- Current understanding of detectors allows to do precision measurements in W/Z sector
- Extensive set o measurements also in W/Z+jets differential cross-sections, also with b-tagging
- Overall impressive agreement with MC predictions

Plan

Amazing how much could have been done with only 36pb⁻¹ data accumulated in 2010: numbers of results are still in the pile-line but already theory is being tested quantitatively.... and is holding its own (unfortunately)

23.11 Top physics

30.11 Diboson production and TGS couplings

- 7.12 B-physics and heavy ions
- **4.01** Higgs boson... where we are?
- **18.01** What's new from New Physics searches?

ATLAS Detector

THE ATLAS DETECTOR IS REALLY BIG!

- Length : $\sim 46 \text{ m}$
- Radius : $\sim 12 \text{ m}$
- Weight : ~ 7000 tons
- $\sim 10^8$ electronic channels
- 3000 km of cables

Transverse momentum

(in the plane perpendicular to the beam)

 $p_{T} = p \sin\theta$

$$\eta = -\log(\operatorname{tg} \frac{\partial}{2})$$

$$\begin{array}{l} \theta = 90^{\circ} \quad \rightarrow \ \eta = 0 \\ \theta = 10^{\circ} \quad \rightarrow \ \eta \cong 2.4 \\ \theta = 170^{\circ} \quad \rightarrow \ \eta \cong -2.4 \end{array}$$

ATLAS Inner Detector

The inner detector $|\eta| < 2.5$ consists of • Pixel detectors, semi-conductor

- Pixel detectors, semi-conductor tracker (SCT), transition radiation tracker
 - ≈ 87 million readout channels
 - Immersed in 2T solenoidal magnetic field

• Resolution of $\sigma/p_T = 5 \times 10^{-4} \oplus 0.015$

ATLAS Calorimeters

Electromagnetic and hadronic calorimeters

- Subsystem technology and granularity \leftrightarrow shower characteristics
- Transverse and longitudinal sampling \approx 200000 readout cells up to $|\eta| < 4.9$

Electromagnetic Calorimeters:

- Fine granularity $\Delta \eta \times \Delta \phi =$ 0.025×0.025 in central region
- Energy resolution $10\%/\sqrt{E}$

Hadronic Calorimeters:

- Granularity $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ in central region, less segmented in forward region
- Energy resolution $50\%/\sqrt{E} \oplus 0.03$