Physics Program of the experiments at Large Hadron Collider

Lecture 9

- Bosons properties
- Photons
- Di-bosons and anomalous couplings

Latest news!!!

- ATLAS experiment published first observation of centrality dependent dijet asymmetry in the collisions of lead ions. CERN-PH-EP-2010-062
- This effect is not observed in proton-proton collision, may point to an interpretation in terms of strong jet energy loss in a hot dense medium.
- CMS also observes this effect, publication will follow.

W boson width: introduction

Predicted very precisely in the Standard Model by assuming the leptonic and hadronic partial width

□ $\Gamma_{W}^{SM} = 2091 \pm 2MeV [PDG:J.Phys.G33,1]$ (2007)

- Deviation from this prediction suggest non-SM decay modes
- $\Gamma_{\rm w}$ is an input to the W mass measurement: $\Delta m_{\rm w} \sim \Delta \Gamma / 7$

 Ideally we would reconstruct the invariant mass of the decay products to measure Γ_w, since v isn't detected we reconstruct the transverse mass

$$m_{T} = \sqrt{2 p_{T}^{\ l} p_{T}^{\ v} (1 - \cos \phi_{lv})}$$

W boson width: analysis strategy

- Simulate m_{τ} distribution with dedicated fast parametrised MC
- Utilise $Z \rightarrow II$ (and $W \rightarrow Iv$) to calibrate the detector to a high precision
- Fit m_{τ} templates (with Γ_{w} varying) to the data, fit range 90-200 GeV

optimised to reduce total uncertainty

$$m_{T} = \sqrt{2 p_{T}^{\ l} p_{T}^{\ v} (1 - \cos \phi_{lv})}$$

W boson width: backgrounds

 Composition of processes with different shapes in the fit region

W boson width: measurement

Source	$\Delta \Gamma_W $ (MeV)
Electron energy scale	33
Electron resolution model	10
Recoil model	41
Electron efficiencies	19
Backgrounds	6
PDF	20
Electroweak radiative corrections	7
Boson p_T	1
M_W	5
Total Systematic	61

Indirect measurement

Results from 2007, by now updated to 1fb⁻¹

Direct photon production

- Prompt photon production is an experimental probe of the hard scattering dynamics
 - Study perturbative QCD
 - Jet energy scale calibration
 - Background to searches
- More than 30 years of experimental data available
- Two main leading order contributions
 - Compton scattering
 - Annihilation of quarks
- Background comes from neutral meson decays.

Photon identification with shower shapes

reminder: opening angle between the two photons of a π^0 of $p_T = 40$ GeV is > 0.007 to be compared with size of strip calo 1^{st} sampling ~0.003

Photon candidate passing "tight" selection

Nice shape in first sampling of EM calormeter

Definition of isolated photons

- Measuring prompt photons experimentally
 - Isolation criterion around the photon candidates is applied to suppress the background from pi0's etc.
 - Requiring isolation also affects the fragmentation contribution

Theoretical calculations

- Both the direct and the fragmentation pieces are accounted for
- Beyond LO, the distinction between the direct and fragmentation becomes dependent on the renormalisation and fragmentation scheme

Photons at LHC

- X reach of photons at LHC is couple of orders of magnitude lower than the previous experiments
- Dominance of the Compton scattering cross-section gives possibility of clean probe to constrain gluon pdf's

CMS analysis: isolated photon spectrum

- Good agreement with NLO predictions from JETPHOX is observed
- Total systematics varies from 8.9%-16.3% depending on the transverse momentum bin
- Dominant systematic uncertainty comes from background shape.

Diboson physics

- Physics with multiple bosons in the final state
 - Such as WW, WZ, Zγ, γγ,...
- Number of important measurement and searches
 - Cross section
 - Search for resonant production
 - Such as Higgs or ...
- Self-interaction boson couplings are of particular interest as they are precisely measured and can be a very sensitive test of the EWK sector of the standard model.

Di-boson cross-sections

 So far primary measurements in leptonic decays, probed σxBR values orders of magnitude smaller.

□ $\sigma xBR = 1.5 fb^{-1}$ for ZZ→μμμμ

- In practice measured topologies:
 - lepton+photon+MET (Wγ), di-lepton+photon (Zγ), photon+MET (Zγ), di-leptons+MET(WW), trileptons+MET(WZ), leptons+jets+MET(WW+WZ), jets+MET(WW+WZ+ZZ), four leptons (ZZ).

Diboson final states

s-channel sensitive to new physics through TGCs

- Charged: WW, WZ, Wγ and neutral ZZ, Zγ and (γγ)
 - Cross-sections, kinematical distributions, gauge-boson couplings
- Verify SM predictions to ~10% (γW,γZ), ~ 25% (WW) and ~50% (WZ,ZZ)
- Until recently measurements at CDF/D0 done in leptonic channel, now new signatures with jets added to the program.

Diboson and searches

- Diboson productions are also background to New Physics searches
- Important to understand this production process

Diboson signatures at Tevatron

 Signatures with jets are interesting because they are background to the Higgs boson searches

- Establishing processes in different channels allows to
 - Combine to improve precision
 - Confidence in modeling and techniques
 - Check consistency between channels

$Z\gamma \rightarrow II\gamma$ (CDF at Tevatron)

■ $Z\gamma \rightarrow II\gamma$, produced as ISR and FSR □ Require $E_{T}^{\gamma} > 7$ GeV, $m_{\parallel} > 40$ GeV

CDF (1 and 2 fb⁻¹): $\sigma(Z \rightarrow ll\gamma) = 4.6 \pm 0.2(stat) \pm 0.3 (syst) \pm 0.3 (lum) pb$

Theory: 4.5 ±0.5 pb(NLO)

$WW \rightarrow |_{V}|_{V}$

- Essential background to understand for Higgs boson searches
- Systematic uncertainties dominated by backgrounds

WZ \rightarrow IvII (at Tevatron)

New measurement:

• 3 exact leptons $p_T > 15$ GeV and MET > 20 or 25 GeV

WZ candidate event: D0

WW/WZ \rightarrow lvjj (at Tevatron)

- Dijet mass fit
- Require MET>25 GeV, dijet p_T>40 GeV to produce smoothly falling background in the signal region

CDF (4.3 fb⁻¹): $\sigma(WW/WZ) = 18.1 \pm 3.3(stat) \pm 2.5 (syst) pb$

 Build event PDF using matrix element ME probability to predict background shapes

CDF (4.6 fb⁻¹): $\sigma(WW/WZ) = 16.5 \pm 3.3(stat) \pm 3.0 (syst) pb$

WW/WZ/ZZ→ jets + MET (at Tevatron)

- Search for VV (V = W,Z) where one boson decays hadronically
- Signal/Background ~ 3%
 - EWK background: V+jets+top (~85%)
 - QCD background: instrumental (~15%)
- No charged lepton requirement
- Includes vvqq' as well as lvqq' final states

CDF (3.5 fb⁻¹): $\sigma(WW/WZ/ZZ) = 18.0 \pm 2.8(stat) \pm 2.6(syst) pb$

Gauge couplings

- In Standard Model (SM) non-abelian nature of SU(2)_L x
 U(1)_Y allow gauge bosons to interact with one another
 - Coupling between 3 gauge bosons=> triple Gauge-Boson Coupling (TGC)
- SM only allows charged coupling (WWZ, WWγ), does not allow pure neutral coupling (ZZZ,ZZγ,Zγγ,γγγ) since Z/γ has no charge nor weak isospin.
- Physics beyond SM can introduce anomalous TGCs which may allow neutral couplings or increase the charged TGCs couplings strenght.

Diboson at LHC

- At the LHC one can study TGC through the measurement of diboson production
 - Each can probe one or more TGC
 - WZ: WWZ vertex
 - WW: WWZ, WWγ vertex
 - Measures the anomalous coupling parameters

Final State	wz	WY	~~~~	ZZ	Zγ
SM	W [±] V ^{TGC} W [±] Z [']	W [±] V ⁺ TGC W [±] V ⁺ V ⁺	W⁺ TGC Z/Y W ⁻	$\left \right\rangle$	$\left \right\rangle$
an.TGC	W [±] ~~~~TGC W [±] Z ¹	W [±] VTGC W [±] Y	W+ TGC Z/Y W-1	Z TGC Y/Z Z	Y Y/Z Z

Anomalous TGC charged

Effective Lagrangian for charged TGC

$$L/g_{WWV} = \frac{ig_1^V}{(W_{\mu\nu}^* W^{\mu} V^{\nu} - W_{\mu\nu} W^{*\mu} V^{\nu})} + \frac{i\kappa^V}{i\kappa^V} W_{\mu}^* W_{\nu} V^{\mu\nu} + \frac{\lambda^V}{M_W^2} W_{\rho\mu}^* W_{\nu}^{\mu} V^{\nu\rho}$$

Anomalous coupling aparameters

Parameter / Process	W+M-	₩±Z/γ		
$\Delta \kappa_{\rm Z} \equiv \kappa_{\rm Z} - 1$	proportional to \hat{s}	proportional to $\sqrt{\hat{s}}$		
$\Delta \kappa_{\gamma} \equiv \kappa_{\gamma} - 1$	proportional to <i>ŝ</i>	proportional to $\sqrt{\hat{s}}$		
$\Delta g_1^Z \equiv g_1^Z - 1$	proportional to $\sqrt{\hat{s}}$	proportional to \hat{s}		
zy	proportional to \hat{s}	proportional to \hat{s}		
λ_Z	proportional to <i>ŝ</i>	proportional to \hat{s}		

 $g_1^{\gamma} = 1 \text{ or } \Delta g_1^{\gamma} = 0.$ gauge invariance requires this!

ŝ : invariant mass of produced bosons

Amplitudes grow with energy and eventually violate tree level unitarity! Avoided by effective cutoff scale:

$$\Delta\kappa(\hat{s}) = rac{\Delta\kappa}{(1+\hat{s}/\Lambda^2)^n}$$

Anomalous TGC neutral

Effective Lagrangian for charged TGC

$$L = -\frac{e}{M_Z^2} [f_4^V(\partial_\mu V^{\mu\beta}) Z_\alpha(\partial^\alpha Z_\beta) + \frac{f_5^V}{f_5} (\partial^\sigma V_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_\beta]$$

- In SM ...
 - f^v couplings are zero at tree level.
 negligible contribution from the one-loop level (10⁻⁴)
 - CP invariance forbids non-zero f₄,
 - parity conservation requires f5 to vanish

TGCs and new physics

- Numerous possible extensions of the Standard Model result in anomalous couplings
 - $\hfill\square$ Example: neutral TGCs: ZZ γ and Z $\gamma\gamma$

Something else?

- Follow effective Lagrangian approach
 - Parametrize the ZZ_γ/Z_{γγ} vertex in the most general way
 - One coupling is usually described in terms of many parameters

Characteristic of the triple gauge-boson couplings

- Sensitivity to TGCs comes from four different types of information
 - Cross section: parabolic increase of cross-section with TGC due to the linear Lagrangian: $\sigma \sim (TGC)^2$
 - Energy behaviour: TGC lead to a broad increase in the differential cross-section at large invariant mass $M_{WV,ZV}$ (V=Z, γ) and transverse momentum $P_T(V)$ (V=W,Z, γ)
 - Production angle: angular information of the bosons
 - Polarisation: different TGCs contribute to different boson helicity states. Decay angular information enhance sensitivity to individual TGCs.

Effect of anomalous coupling

- Any non-zero coupling result in in crease of the cross-section and harder p_T spectrum of the outgoing boson.
 - Can be simulated by a number of generators, such as Sherpa, MCFM, Baur, etc.

$WZ \rightarrow IvII at D0$

Set 95%CL limits in 2D and 1-D

WWV coupling

 WWV (V=γ or Z) can be parametrized by seven independent parameters as such

$$\mathcal{L}_{WWV}/g_{wwv} = ig_1^V \left(W^{\dagger}_{\mu\nu} W^{\mu} V^{\nu} - W^{\dagger}_{\mu} V_{\nu} W^{\mu\nu} \right) + i\kappa_V W^{\dagger}_{\mu} W_{\nu} V^{\mu\nu} + i \frac{\lambda_V}{M_W^2} W^{\dagger}_{\lambda\mu} W^{\mu}_{\nu} V^{\nu\lambda} - i \frac{\lambda_V}{M_W^2} W^{\dagger}_{\mu\nu} W^{\mu\nu} + i \frac{\lambda_V}{M_W^2} W^{\mu\nu} + i \frac{\lambda_$$

 $g_4^V W^{\dagger}_{\mu} W_{\nu} \left(\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu} \right) + g_5^V \epsilon^{\mu\nu\rho\alpha} \left(W^{\dagger}_{\mu} \overleftrightarrow{\partial}_{\rho} W_{\nu} \right) V_{\alpha} + i \tilde{\kappa}_V W^{\dagger}_{\mu} W_{\nu} \tilde{V}^{\mu\nu} + i \frac{\lambda_V}{M_W^2} W^{\dagger}_{\lambda\mu} W^{\mu}_{\nu} \tilde{V}^{\nu\lambda}.$

- For WWγ, only two, CP even couplings are generally considered: $λ_{\gamma}$ and $\Delta k_{\gamma} = k_{\gamma} 1$
- For WWZ, another CP even variable is used g_1^z
- In SM unitarity is conserved at all energies, anomalous couplings violate it at some energy.
 - Usually analyses follow form-factor parametrisation of couplings as function of energy scale

$$\lambda_{V} = \frac{\lambda_{V}^{0}}{\left(1 + \hat{s}/\Lambda^{2}\right)^{2}} \qquad \Delta \kappa_{V} = \frac{\Delta \kappa_{V}^{0}}{\left(1 + \hat{s}/\Lambda^{2}\right)^{2}}$$

Elzbieta Richter-Was

Anomalous TGC measurements

s-channel sensitive to new physics through TGCs

- Diboson channels are used to test the SM description for gauge bosons interations
 - Tevatron (LHC) results complementary to LEP
 - Sensitive to deviations at higher Q²
 - Separately probe WWZ and WWγ vertices

Complementarity to LEP

 Experiments at LEP2 primarily tested a combination of WWγ and WWZ TGC's in ee→ WW by full reconstruction of event kinematics and cross-section measurements at sqrt(s) < 2009 GeV

http://lepewwg.web.cern.ch/LEPEWWG/lepww/tgc/

 At LEP WWV vertex is measured using ee→WW process

 Cannot distinguish WWγ and WWZ vertices: use model dependence between two couplings

Elzbieta Kichter-was

WWy coupling

- WWγ coupling can be directly probed in Wγ production
 - Require standard photon and lepton identification criteria
 - □ $p_{\tau}(\gamma) > 8 \text{ GeV}, \Delta R > 0.7$

 Use MC generator to simulate effect of anomalous coupling

Elzbieta Richter-Was

Lectures on LHC physics

WWZ coupling

- Two processes can be used to probe this coupling: WW and WZ
 - WZ production is unique to directly check WWZ coupling

 Tevatron is using leptonic decay channels

WWy – WWZ coupling

Results are consistent with SM predictions
 Limits on TGC's are ~0.2 at 95% CL

Neutral TGC: ZZ_Y and Z_{YY}

- SM predicts only two three-level diagrams of Zγ via initial and final state radiation
 - Events with charged leptons are very clean but less sensitive to TGC's
 - $\hfill\square$ ZZ γ and Z $\gamma\gamma$ couplings are almost zero

Previous results on Zγ: LEP

LEP EWWK 2003, Preliminary

- $egin{aligned} -0.056 &< h_1^\gamma &< 0.055 \ -0.045 &< h_2^\gamma &< 0.025 \ -0.049 &< h_3^\gamma &< -0.008 \ -0.002 &< h_4^\gamma &< 0.034 \end{aligned}$
- $-0.13 < h_1^Z < 0.13$ $-0.078 < h_2^Z < 0.071$ $-0.20 < h_3^Z < 0.07$ $-0.05 < h_4^Z < 0.12$

Measured ZZγ and Zγγ couplings agree with SM at
 10⁻¹ – 10⁻² level.

Elzuicia וגונוווכו-was

Search for a TGCs in $Z\gamma$

• Use both $Z\gamma \rightarrow II\gamma$ and $Z\gamma \rightarrow vv\gamma$ productions to search for anomalous $ZZ\gamma$ and $Z\gamma\gamma$ couplings.

 Cross-section and p_τ^γ
 spectrum agrees well with SM predictions

Combined limits

- The most stringent limits on ZZγ and Zγγ anomalous couplings
 - $-|h_3^{V}| < 0.016$, $|h_4^{V}| < 0.0006$ at 95% C.L.

D0 charged TGC combination

Elzbieta Richter-Was

Examples from ATLAS and CMS:

WW→lvlv

[•]Probes WWγ & WWZ TGC

WZ→lvll

Examples from ATLAS and CMS:

*Νγ→Ι*νγ

- \bullet Wy measurement can probe WWy TGC
- Events selected with 1 isolated lepton (e,μ) , 1 isolated photon, large E_T^{miss}

LHC prospects

ATLAS TGC sensitivity for 1.0 fb⁻¹

95% CL intervals for anomalous TGCs, cutoff Λ = 2 TeV

Diboson	λ_z	$\Delta \kappa_z$	Δg_1^z	$\Delta \kappa_{\gamma}$	λ_γ
WZ(ATLAS) 1.0 fb ⁻¹	[-0.028,0.024]	[-0.203,0.339]	[-0.021,0.054]		
WZ(D0) 1.0 fb ⁻¹	[-0.17,0.21]	[-0.12,0.29]	$\Delta g_1^z = \Delta \kappa_z$		
WW(ATLAS) 1.0 fb ⁻¹	[-0.108,0.111]	[-0.117,0.187]	[-0.355,0.616]	[-0.240,0.251]	[-0.259,0.421]
WW(LEP)	$\lambda_z = \lambda_\gamma$	$\Delta \kappa_z = \Delta g_1^z$ - $\Delta \kappa_\gamma \tan^2 \theta_w$	[-0.051,0.034]	[-0.105,0.069]	[-0.059,0.026]
Wγ(ATLAS) 1.0 fb ⁻¹				[-0.43,0.20]	[-0.09,0.04]
Wγ(D0) 0.16 fb ⁻¹				[-0.88, 0.96]	[-0.2,0.2]

LHC prospects

WW, WZ, W γ and Z γ signal can be established with statistical sensitivity better than 5 σ for the first 0.1 fb⁻¹ integrated luminosity, and ZZ signal can be established with 1.0 fb⁻¹ data.

The anomalous triple gauge boson coupling sensitivities from LHC/ATLAS can be significant improved over the results from Tevatron and LEP using the first 1.0 fb⁻¹ data.

SM Diboson productions are important control samples for Higgs, SUSY, Technicolor, G, Z' particle searches with diboson final states.

Next topics

- 8.12, 15.12 Higgs (SM)
- 5.01 Searches: new exclusion limits
- 12.01 Higgs (MSSM)
- **19.01, 26.01 SUSY**

- $W\gamma \rightarrow l\nu\gamma$ • $Z\gamma \rightarrow ll\gamma$
- $Z\gamma \rightarrow vv\gamma$
- $WW \rightarrow llvv$
- WW → lvqq
- $WZ \rightarrow lvqq$
- $WZ \rightarrow lllv$
- $WZ \rightarrow qqvv$
- $ZZ \rightarrow qqvv$
- $ZZ \rightarrow llll$
- $ZZ \rightarrow llvv$ • $ZZ \rightarrow llqq$

- $W\gamma \rightarrow l\nu\gamma$
- $Z\gamma \rightarrow ll\gamma$
- $Z\gamma \rightarrow \nu\nu\gamma$
- $WW \rightarrow llvv$
- $WW \rightarrow lvqq$
- $WZ \rightarrow lvqq$
- $WZ \rightarrow lllv$
- $WZ \rightarrow qqvv$
- $ZZ \rightarrow qqvv$
- $ZZ \rightarrow llll$
- $ZZ \rightarrow llvv$
- $ZZ \rightarrow llqq$

- $W\gamma \rightarrow l\nu\gamma$
- $Z\gamma \rightarrow ll\gamma$
- $Z\gamma \rightarrow \nu\nu\gamma$
- $WW \rightarrow llvv$
- WW → lvqq
- $WZ \rightarrow l v q q$
- $WZ \rightarrow lllv$
- $WZ \rightarrow qqvv$
- $ZZ \rightarrow qqvv$
- $ZZ \rightarrow llll$
- $ZZ \rightarrow llvv$
- $ZZ \rightarrow llqq$

- $W\gamma \rightarrow l\nu\gamma$
- $Z\gamma \rightarrow ll\gamma$
- $Z\gamma \rightarrow \nu\nu\gamma$
- $WW \rightarrow llvv$
- $WW \rightarrow lvqq$
- $WZ \rightarrow lvqq$
- $WZ \rightarrow lllv$
- $WZ \rightarrow qqvv$
- $ZZ \rightarrow qqvv$
- $ZZ \rightarrow llll$
- $ZZ \rightarrow llvv$
- $ZZ \rightarrow llqq$

