Physics Program of the experiments at Large Hadron Collider

Lecture 4

Starting to explore hard QCD

Latest news!!!

- Machine and data taking:
 - 368 bunches
 - 150ns bunch spacing
 - □ $L \sim 2.1 \times 10^{32} \rightarrow up$ to 6 pb⁻¹ in a fill
 - Bunch intensity: up to 1.2 10¹¹p/bunch; emitance 2 μm (both better than nominal)
 - Max (average) pile-up: 3.8 events /x-ing
 - Stored beam energy: ~ 24MJ
 - Recorded luminosity: > 32 pb⁻¹
- LHC plans: deliver 40pb⁻¹ by Thursday, then 5 days with 50ns bunch spacing, then start preparing heavy ion run.

QCD

Scattering processes at high energy hadron colliders can be classified as either HARD or SOFT

Quantum Chromodynamics (QCD) is the underlying theory for all such processes, but the approach (and the level of understanding) is very different for the two cases

For HARD processes, e.g. W or high- E_T jet production, the rates and event properties can be predicted with some precision using perturbation theory

For SOFT processes, e.g. the total cross section or diffractive processes, the rates and properties are dominated by non-perturbative QCD effects, which are much less well understood

Elzbieta Richter-Was

Understanding cross-sections at the LHC

Perturbative QCD in the LHC era

Tuned event simulation (parton shower + UE) MC interfaced with LO or NLO hard scattering MEs

LO, NLO, NNLO, ... supplemented by resummed NⁿLL improvements, EW corrections

Parton distribution functions

 The QCD factorisation theorem for hard scattering (short distance) inclusive processes

$$\begin{aligned} \sigma_X &= \sum_{\mathbf{a}, \mathbf{b}} \int_0^1 d\mathbf{x}_1 d\mathbf{x}_2 \ \mathbf{f}_{\mathbf{a}}(\mathbf{x}_1, \mu_F^2) \ \mathbf{f}_{\mathbf{b}}(\mathbf{x}_2, \mu_F^2) \\ & \times \quad \hat{\sigma}_{\mathbf{a}\mathbf{b}\to X} \left(\mathbf{x}_1, \mathbf{x}_2, \{\mathbf{p}_i^{\mu}\}; \alpha_{\mathbf{S}}(\mu_R^2), \alpha(\mu_R^2), \frac{\mathbf{Q}^2}{\mu_R^2}, \frac{\mathbf{Q}^2}{\mu_F^2} \right) \end{aligned}$$

Perturbative processes

- Hard processes are rather well described by QCD
 - Quantitative description for Q² scales above ~ 10 GeV^2
 - Decades of earlier work have teach us how to make useful predictions and what questions to ask of the data
- Now we have the possibility to extend measurements into new Q² range
 - First we have to gain confidence in the predictions and our ability to confront them with the data
- Hard scattering is the domain of new physics
 - Important we understand the standard model processes if we are to be able to identify new physics

How precise predictions

- LO for generic partonshower MCs, tree level ME's
- NLO for many parton level signal and background processes
- NNLO for limited number of precision observables: W, Z, DY, H

General structure of a QCD perturbation series

- Choose a renormalisation scale (e.g. MSbar)
- Calculate cross-section to some order (e.g. NLO)

• Can help to converge by using a physical scale choise e.g. $\mu = M_z$ or $\mu = E_T^{jet}$

The impact of NLO

Shown only scale variation μ_R and μ_F

Parton distribution functions

Momentum fraction x_1 , x_2 determined by mass and rapidity of X.

 x dependence of f_i(x,Q²) determined by "global fit" to deep inelastic scattering and other data, Q² dependence determined by DGLAP equations:

$$\begin{array}{lll} \hline \begin{array}{lll} \displaystyle \frac{\partial \mathbf{q}_{i}(\mathbf{x},\mathbf{Q}^{2})}{\partial \log \mathbf{Q}^{2}} & = & \displaystyle \frac{\alpha_{S}}{2\pi} \displaystyle \int_{\mathbf{x}}^{1} \frac{d\mathbf{y}}{\mathbf{y}} \Big\{ \mathbf{P}_{\mathbf{q}_{i}\mathbf{q}_{j}}(\mathbf{y},\alpha_{S}) \; \mathbf{q}_{j}(\frac{\mathbf{x}}{\mathbf{y}},\mathbf{Q}^{2}) \\ & & + \mathbf{P}_{\mathbf{q}_{ig}}(\mathbf{y},\alpha_{S}) \; \mathbf{g}(\frac{\mathbf{x}}{\mathbf{y}},\mathbf{Q}^{2}) \Big\} \\ \\ \displaystyle \frac{\partial \mathbf{g}(\mathbf{x},\mathbf{Q}^{2})}{\partial \log \mathbf{Q}^{2}} & = & \displaystyle \frac{\alpha_{S}}{2\pi} \displaystyle \int_{\mathbf{x}}^{1} \frac{d\mathbf{y}}{\mathbf{y}} \Big\{ \mathbf{P}_{\mathbf{g}\mathbf{q}_{j}}(\mathbf{y},\alpha_{S}) \; \mathbf{q}_{j}(\frac{\mathbf{x}}{\mathbf{y}},\mathbf{Q}^{2}) \\ & & + \mathbf{P}_{\mathbf{gg}}(\mathbf{y},\alpha_{S}) \; \mathbf{g}(\frac{\mathbf{x}}{\mathbf{y}},\mathbf{Q}^{2}) \Big\} \end{array}$$

PDF's at LHC

- Most SM and new physics sample pdf's in the region of where they are already well known
- Current pdf uncertainties provide benchmark for whether LHC can add new information
- Low-mass forward production (e.g. b quarks, Drell-yan) might provide new information on small-x partons

Extending even further

 To probe very small x at LHC we need to produce relatively light objects at forward rapidity

•
$$x \sim (M/\sqrt{s}) \cdot e^{-y} << 1$$

- The simplest process is Drell-Yan production, it requires good detection of lepton with low p_τ in the forward region.
- Studies underway at the LHCb to cover this region.

How PDF's are obtained

- Choose a factorisation scheme (e.g. MSbar), and an order of perturbation theory (LO, NLO, NNLO) and a starting scale Q₀ where pQCD applies (e.g. 1-2 GeV).
- Parametrise quark and gluon distributions at Q₀, e.g.

$$f_i(x, Q_0^2) = A_i x^{a_i} [1 + b_i \sqrt{x} + c_i x] (1 - x)^{d_i}$$

- Solve DGLAP equations to obtain the pdfs at any x and $Q>Q_0$; fit data for parameters (A_i , a_i , ... α_s)
- Approximate the exact solutions (e.g. interpolation grids, expansions in polynomials etc), just output "global fit" is available for users

SUBROUTINE PDF(X,Q,U,UBAR,D,DBAR,...,BBAR,GLU)

input

output

Anatomy of global PDF fit

LO vs NLO vs NNLO

- LO evolution too slow at small x
- NNLO fit maginally better than NLO
- LO can be improved (e.g. LO*)for MC's by adding Kfactors, relaxing momentum conservation, etc.

PDF's and $\alpha_s(Q^2)$

- PDF's and α_s(Q²) are correlated
- With new approach it can be accounted for simultaneusly in calculations of the cross-sections
 - Eigenvectors of PDF's with different fixed as values provided

NNLO quark up distribution, ratio to central value

Benchmark W,Z cross-sections

Elzbieta Richter-Was

Lectures on LHC physics

Predictions for σ (W,Z) NLO vs NNLO

Parton luminosities: 10 TeV vs 14 TeV

- Ratio of parton luminosities and 10 TeV and 14 TeV for
 - \Box Σ qqbar (W,Z production)
 - gg (Higgs, ttbar)
 - $G=g+4/9\Sigma$ (q+qbar) (high ET dijet production)
- In case of W and Z crosssections are not that much smaller

Inclusive jet production

Jet clustering algorithms

p [GeV]

20 15 10

p [GeV]

20

10

- Infra-red and collinear safe
 - Resultant jets stable under these effects
- Two general classes
 - Cone algorithms around seeds
 - Require split-merge if overlapping cones
 - Clustering algorithms
 - May give irregular shapes with complicated background corrections
- Anti-k_t is a clustering algorithm
 - p=1 for k_t clustering, p=0 for Cambridge/Aachen, p=-1 for anti-k_t
 - Cluster smallest distance and recompute

$$d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta_{ij}^2}{R^2} \qquad \Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$
$$d_{iB} = k_{ti}^{2p}$$

Cam/Aschen, R=1

nti-k, R=1

arXiv:0802.1189v2

Jet energy scale (JES)

Jet energy scale is critical

- Based on the test-beam calibration of production detector elements with monochromatic beams of electrons and hadrons
- Extra complications with the final detector
 - More dead material (supports, cables, pipes, etc.)
 - Hadrons are in jets rather than isolated single particles
 - Spectrum of hadron energies
 - $\hfill\square$ Mixture of EM ($\pi^{0 \rightarrow} \gamma \gamma$) and hadronic energy deposition
- These complications are captured in Geant4 simulation MC
 - Used for both test beam and final detector
 - Detector response fully simulated for final states (different MC: Pythia, Herwig, Alpgen)

Jet energy scale (JES)

Jet energy scale is critical

- In-situ cross-checks done with data
 - Calorimetr response for isolated hadrons
 - p_T balance for dijet final states
 - p_{T} balance for γ -jet final states
- Current jet energy scale uncertaintity (ATLAS)
 - A mild function of p_{τ} and η
 - With 17nb⁻¹ data ~ 7-8%
 - Ultimate goal is 1%

Inclusive jet production

- Inclusive single jet cross-section measured to p_T of 550GeV
- Excellent agreement with NLO prediction over 5 orders of magnitude
- The dominant systematic uncertainty for the data is the JES

Emerging "precision" phenomenology at LHC

Inclusive dijet production

- Inclusive dijet crosssection measured to
 - M~ 2 TeV
 - Leading jet $p_T > 60 \text{ GeV}$
 - Subleading jet $p_T > 30 \text{ GeV}$
 - □ |η| < 2.8
- Excellent agreement with NLO predictions

Emerging "precision" phenomenology at LHC

Azimuthal decorrelation in

dijet events

- Inclusive jets are no backto-back
 - Additional jets in the final state
 - How large is effect?
 - Do MC models describe it properly?
 - Alpgen works very well over 3 orders of magnitude
 - Data are well described

Multijet production

- Can we count and characterize the additional jets?
 - Essential to understand for newparticle searches
 - Prediction requires higher order QCD corrections
- Count jets with $p_T > 30$ GeV,

|y|<2.8

- JES crucial because of steeply falling spectrum
- Plot ratio of cross-sections for successive multiplicities
 - Many systematic errors cancel

Multijet production

- Do we understand the p_{τ} spectrum of the extra jets?
 - Pythia spectrum renormalised to data for each jet multiplicity
 - Results in good agreement with Alpgen

Jet reconstruction in CMS

CalorimeterJet (calojet)

- from energy depositions grouped HCAL & ECAL
- Jet Plus Tracks (JPT)
 - Calorimeters jets corrected with tracker momentum
- Particle Flow Jets (PFJ):
 - Reconstructed particles using information from all sub-detectors; separate calibration per particle type

TrackJets

- from tracks only
- Jet Algorithms:
 - Default for p+p collisions is anti-K_T with R = 0.5
 - Also implemented: KT, SiSCone

Using different inputs allows CMS to study and constrain experimental systematics for good understanding of jet identification, resolutions and energy scale

Inclusive jet cross-section

Inclusive jet p_T spectra are in **good agreement with NLO** theory for all reconstruction types

Extending to very low p_T thanks to novel reconstruction methods (Particle Flow)

Low p_T reach limited from theory side by nonperturbative corrections

Extending the high-p_T reach beyond Tevatron's

Large rapidity coverage up to |y|<3

Tevatron: recorded about 8-9 fb⁻¹/exp.

Tevatron a "SM" discovery machine

10 DØ Run II

Jet physics

jet

jet

proton

00000

Glun density at high x

- Tevatron jet measurements complement HERA measurements.
 - Unique constrain on gluon density at high x in MSTW08-fit: lower gluon density from Run II data compared with Run |

Alpha_s from jets

- proton eeeeo Λs eeeeo jet
- Uses the p_T dependence of the jet
 - x-section; medium region x = 0.2-0.3
- Highest precision from hadron collider

Multi-jet production

- Sensitive to QCD radiation: test of MC models at NLO
- Three-jet mass cross-section and Ratio: 3jets/2jets versus p_T

Some kinematic distributions

Some kinematic definitions

Next topics

- 3.11 W,Z bosons:
 - cross-sections (incl. differential), W/Z+jets
 - asymmetry
- 10.11 W,Z bosons:
 - precise measurements
- 17.11 Top: xsection, mass
- 24.11 Hot topics: new exclusion limits
- 1.12, 8.12, 15.12 Higgs