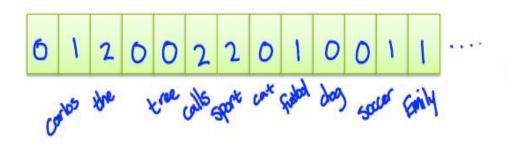
INTRODUCTION TO DATA SCIENCE

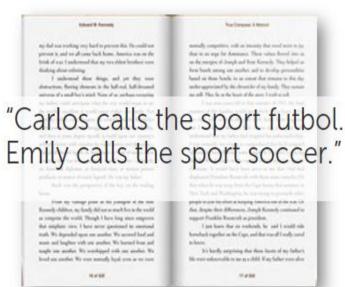
This lecture is based on course by E. Fox and C. Guestrin, Univ of Washington

WFAiS UJ, Informatyka Stosowana I stopień studiów

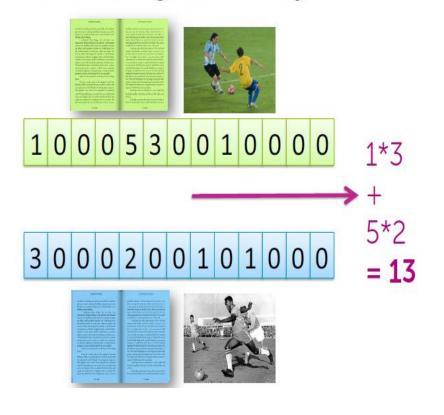
Retrieving documents of interest

- Currently reading article you like
- Goal: Want to find similar article

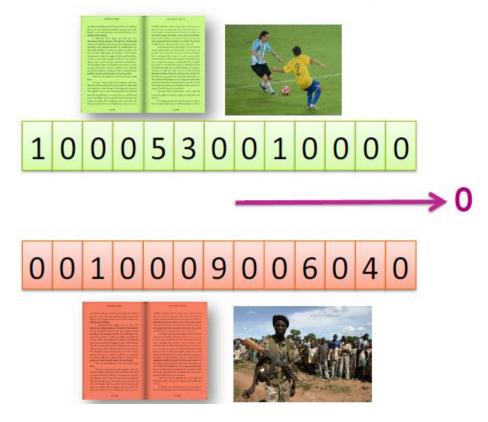

Retrieving documents of interest

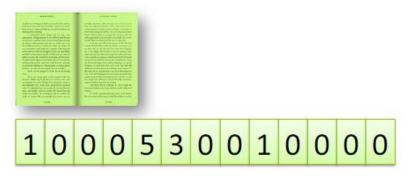

Challenges

- How do we measure similarity?
- How do we search over articles?



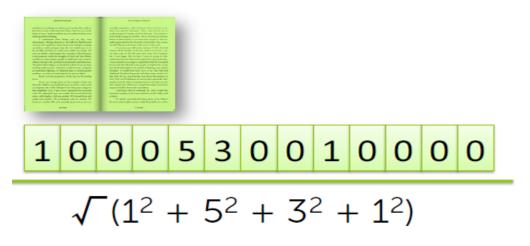
- Bag of words model
 - Ignore order of words
 - Count # of instances of each word in vocabulary

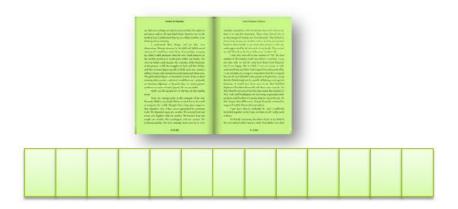



Measuring similarity

Measuring similarity

Issues with word counts - Doc length





Solution = normalize

Prioritizing important words

Issues with word counts – Rare words

Common words in doc: "the", "player", "field", "goal"

Dominate rare words like: "futbol", "Messi"

Prioritizing important words

Document frequency

- What characterizes a rare word?
 - Appears infrequently in the corpus

- Emphasize words appearing in few docs
 - Equivalently, discount word w based on
 # of docs containing w in corpus

Prioritizing important words

Important words

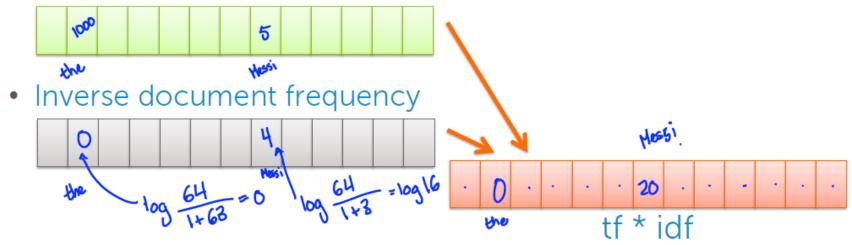
- Do we want only rare words to dominate????
- What characterizes an important word?
 - Appears frequently in document (common locally)
 - Appears rarely in corpus (rare globally)
- Trade off between local frequency and global rarity

TF-IDF document representation

- Term frequency inverse document frequency (tf-idf)
- Term frequency

Inverse document frequency

$$\log \frac{\# \operatorname{docs}}{1 + \# \operatorname{docs} \operatorname{using word}}$$



TF-IDF document representation

TF-IDF document representation

- Term frequency inverse document frequency (tf-idf)
- Term frequency

Retrieving similar documents

Nearest neighbor search

Query article:

Corpus:

- Specify: Distance metric
- Output: Set of most similar articles

Retrieving similar documents

1 – Nearest neighbor

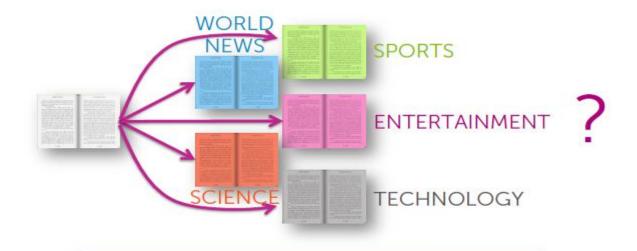
- Input: Query article
- Output: Most similar article
- Algorithm:
 - Search over each article 📗 in corpus
 - Compute s = similarity(, , , ,)
 - Return

Retrieving similar documents

k - Nearest neighbor

- Input: Query article
- Output: List of k similar articles

Structure documents by topics


What if some of the labels are known?

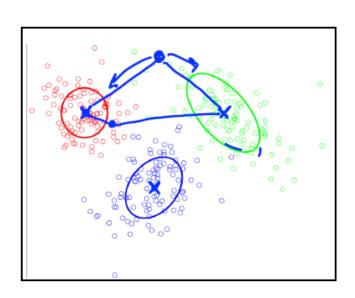
Training set of labeled docs

Structure documents by topics

Multiclass classification problem

Labels provided: case of supervised learning problem

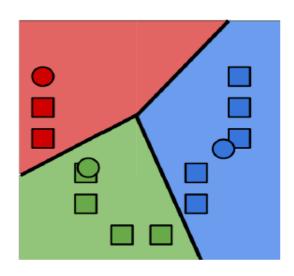
Clustering


No labels provided

 Want to uncover cluster structure Input: docs as vectors Output: cluster labels No labels provided unsupervised learning word

Clustering

What defines a cluster?


- Cluster defined by center & shape/spread
- Assign observation (doc) to cluster (topic label)
 - Score under cluster is higher than others
 - Often, just more similar to assigned cluster center than other cluster centers

Clustering

k-means algorithm

- Initialize cluster centers
- 1. Assign observations to closest cluster center
- 2. Revise cluster centers as mean of assigned observations
- 3. Repeat 1.+2. until convergence

Clustering images

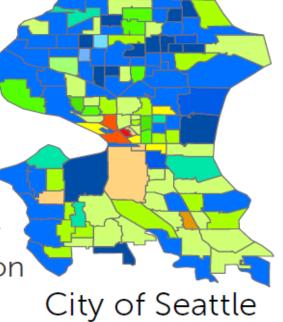
- For search, group as:
 - Ocean
 - Pink flower
 - Dog
 - Sunset
 - Clouds
 - ...

Products on Amazon

 Discover product categories from purchase histories

Or discovering groups of users

Discovering similar neighborhoods


 Task 1: Estimate price at a small regional level

Challenge:

 Only a few (or no!) sales in each region per month

Solution:

 Cluster regions with similar trends and share information within a cluster

Discovering similar neighborhoods

 Task 2: Forecast violent crimes to better task police

 Again, cluster regions and share information!

 Leads to improved predictions compared to examining each region independently

Washington, DC

We discussed how to ...

- Describe ways to represent a document (e.g., raw word counts, tf-idf,...)
- Measure the similarity between two documents
- Discuss issues related to using raw word counts
 - Normalize counts to adjust for document length
 - Emphasize important words using tf-idf
- Implement a nearest neighbor search for document retrieval
- Describe the input (unlabeled observations) and output (labels) of a clustering algorithm
- Determine whether a task is supervised or unsupervised
- Cluster documents using k-means (algorithmic details to come...)
- Describe other applications of clustering