INTRODUCTION
TO DATA SCIENCE

This lecture is
based on course by E. Fox and C. Guestrin, Univ of Washington



What is retrieval?
=

Search for related items

Nearest

Neighbor

Input x,{x}: T
features for Compute
query point :
N dista nces'to Output xNN:
features of other x "neare;t" point or
all other databoints set of points to query
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What is retrieval?
N

Retrieve "nearest neighbor” article

Space of all articles,
organized by similarity of text

T

query article
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What is retrieval?
I
Or set of nearest neighbors

Space of all articles,
organized by similarity of text
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Retrieval applications
s

Just about everything...

Products

StrSeamlng content: Social networks
ongs

News articles (people you might want

Movies
TV shows

I
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What is clustering?
—

Discover groups of similar inputs

#M# Intelligence

Input {x}: I

featL'thes'for Separate
oints in : .
I:)dataset points into  Output {z):

disjoint sets cluster labels per
datapoint
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Clustring applications

Clustering documents by “topic”

Intelligence
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Clustering applications
B

Clustering images

For search, group as:

ﬂ--ﬂ—

— Ocean

— Pink flower
- Dog

— Sunset

— Clouds
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Impact of retrieval & clustering
B

* Foundational ideas

 Lots of iInformation can be extracted using these tools
(exploring user interests and interpretable structure
relating groups of users based on observed behavior)
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Overwiew of content

Nearest : .
neighbors KD-trees Distance metrics
| : | Locality sensitive | Approximation
Clustering hashing algorithms
| Mixture of L | Unsupervised
Gaussians k-means learning
Latent Dirichlet Probabilistic
1 allocation —| MapReduce | modeling
Expectation | Data parallel
Maximization problems
o~ - || Bayesian
Gibbs sampling infarence
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Retrieval

as

k-nearest neighbor search
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1-NN search for retrieval
e

Space of all articles,
organized by similarity of text

20/11,27/11 2024



1-NN search for retrieval
S

Compute distances to all docs

Space of all articles,
organized by similarity of text
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1-NN search for retrieval
T

Retrieve "nearest neighbor”

Space of all articles,
organized by similarity of text

nearest neighbor
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1-NN search for retrieval
B

Or set of nearest neighbors

Space of all articles,
organized by similarity of text
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1-NN algorithm
T

1 — Nearest neighbor

* Input: Query article J_J:_)_(:q

Formally: W = min distance (Xg, %)

.
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1-NN algorithm

closest document
Initialize Dist2NN = o,
Fori=L2;:.N

Compute: d = dlstance(gf:ZE; | ’
If & < Dist2ZNN .

document |

= from corpus
set q =
set Dist2ZNN =

: . AV X
Return most similar document . «X

closest document in /
corpus to query article

query document

Xq,
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k-NN algorithm

* Input: Query article _U X,
Corpus of documents

o XN

T

Formally:
NG Zt/x'"" el X"""i

i Y
e o Xi ek dn KT

: o
dstance (X; x,)Z Mo digmnce (X7, %)
/ 1 x“ j.s“'“#
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k-NN algorithm

sort first k documents
by distance to query doc

Initialize DistZk_NN — Sort(ﬁl,...,ﬁk) <— list of sorted distances

. it ) |. <— list of sorted docs

t(
For i=k+1,...,N «— Query doc

Compute: & = distance( J_. ! -h)

If & < Dist2KNNI[K] c— distance o k* N\ (furthese NN in sex)
find j such that 0 > Dist2kNNJ[j-1] but & < Dist2KNN{j]
remove furthest house and shift queue:

:ﬁﬁ;}b llllllLEl_fi lllll'ﬂll___
@ Dist2kNN[j+1:k] = Dist2kNN[j:k-1]
set Dist2kNN[j] = & and [iflfil = | j  closesthdocs
Return k most similar articles -/

B B
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Critical elements of NN search
B

ltem (e.qg., doc) representation
X, €

Measure of distance between items:
0 = distance(x;, X,)
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Document representation
I

Bag of words model

- Ignore order of words

- Count # of instances of
each word in vocabulary

2| || |2 31l “Carlos calls the sport futbol.
Emily calls the sport soccer.”
i & @t‘\\\ f 0..\\‘, ‘fr‘ Q'y\ St kb s o

M —ere -
B e
e At g s by wns g D e
e At e e e e e - c—— e e e
h Vs byt n e e W and b gud Nanhad sgiee m e (o wnd o o o | el ot
e ] e
% el e e b R R e s
B R e e L W v bt s A Y g A o -
- Ve
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Document representation

Issues with word counts —
Rare words

Common words in doc: “the’, “player”, "field”, "goal’
Dominate rare words like: “futbol”, "Messi”
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Document representation
N
TF-IDF document representation

Emphasizes important words

- Appears frequently in document (common locally)

Term frequency = | | | word|counts

- Appears rarely in corpus (rare globally)

Inverse doc freq. = qu L lade

-
11S111 0 W ‘l"“
@ oL vV
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Document representation
o

TF-IDF document representation

Emphasizes important words

- Appears frequently in document (common locally)

Term frequency = word counts

— Appears rarely in corpus (rare globally)

| et _ [ # does
nverse doc freq. = |98 L dd

e J11S1 Y Or  RAT T"‘:I \
o ol =¥yt

Trade off: local frequency vs. global rarity tf * idf
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Distance metrics:

Distance metrics:
Defining notion of “closest”

In 1D, just Euclidean distance:

distance(x;x,) = [x;-X4|

In Multiple dimensions:
- can define many interesting distance functions

- most straightforwardly, might want to weight
different dimensions differently
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Distance metrics:
T [

Weighting different features

Reasons:
- Some features are more relevant than others

# bedrooms
# bathrooms
sq.ft. living
sq.ft. lot
floors

year built

year renovated
waterfront
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Distance metrics:

Weighting different features

Reasons:
- Some features are more relevant than others

title
abstract
main body
conclusion
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Distance metrics:
T I

Weighting different features

Reasons:
— Some features are more relevant than others
— Some features vary more than others

Small changes . .
© matter more Specify weights
iﬁ @ < > .
o0 as a function of
2 s e ° Big changes feature spread
E P :ii matter less
L @ .
@ o0 .
o® o 0% For feature j:
e
e, o 1
Feature 1 g maxi(xi[j])_mini(xi[j])
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Distance metrics:
I

Scaled Euclidean distance

Formally, this is achieved via

distance(x;, xq) —
\/al()':i[l]-)t:q[l]):2 + ... + ay(x;[d]-x,[d])?

weight on each feature
(defining relative importance)

20/11,27/11 2024



Distance metrics:
I I

Effect of binary weights

distance(x; x,) =
Var (xi[11-x[11)2 + ... + ag(x;[d]-x,4[d])?

Setting weights as O or 1

Is equivalent to ] .
feature selection Feature engineering/

selection is
important, but hard
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Distance metrics:
T

(non-scaled) Euclidean distance

Defined in terms of inner product

distance(x; x.) = / (X=Xg) T (Xi—X,)
(R111-%4111)2 + ... + (x;[d]-x,[d])2

Xa Xg,

j— — Y;-")t'q’
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Distance metrics:
Ta [

(hon-scaled) Euclidean distance

Defined in terms of inner product

distance(x;, x,) = J(xi—xq)T(xi—xq) &

OGflL-xg[1D? + ... + (x[dl-x,[d])? &

E‘L\x;m-gru Yake
distance? = ' — 5q.rt.
A ymnG) E
SRR
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Distance metrics:
N

Scaled Euclidean distance

Defined in terms of inner product

distance(x; x,) = \/(xi—xq)Tl-;\(xi—xq)

ayX[11-X,[1)? + ... + agxid]-x,[d])?

v [ PR
. 1 —

distance? = " a, -
. a . .
RO QN 5 1

- . ].ﬁrd'b
\ -

e N N N
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Distance metrics:
=N

Another natural inner product measure

ST i SRR
= s

e i o

e M o
—— -

TS

SCESTRI e

e

1000530010000 Similarity
=%TX
i g

=2 %] x,[j

=13

20/11,27/11 2024



Distance metrics:

I
Another natural inner product measure

Similarity
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Distance metrics
a6

Cosine similarity — normalize

d
Similarity = X[j] x,[j o
=1 ’b\\bo
d Mm\\
_ > D2 &
- Not a proper =t /
distarlce o
metric : = COS(e) :’]:'3
- Efficient to ’ é'é
compute for |X- ||X.4| | 5
sparse vecs _ (Y [X st e
) (IHD ( g

o
I[)€1'|l ///’ Feature 1 -
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Distance metrics
2
Normalize

1000530010000 <%
o 2
J(12 4+ 52 4+ 32 4 12) e - Z %6

1 53 1
// 000/ / 00/ 0000
6 66 6
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Distance metrics
=N

Cosine similarity

In general, -\ < similarity < |

For positive features (like tf-idf) %u'
0 <similarity < '* o2

Define distance = 1-similarity
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Distance metrics
T I

To normalize or not?
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Distance metrics

In the normalized case

o : 4 e e i
Pl ey e ey -
T e
3 [ty

--—m-..-m

[E=N

4 4
Similarity
=13/24
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Distance metrics
e

But not always desired...

Normalizing can

make dissimilar

objects appear
more similar

short tweet

Common
compromise:
Just cap maximum
word counts

long document long document
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Distance metrics
Ta [

Other distance metrics

- Mahalanobis

- rank-based

— correlation-based
- Manhattan

— Jaccard

- Hamming
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Combining distance metrics
I

Example of document features:

1. Text of document
- Distance metric: Cosine similarity

2. # of reads of doc
— Distance metric: Euclidean distance

Add together with user-specified weights
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Scaling up k-NN search

by storing data in a KD-tree
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Complexity of brute-force search
N

Given a query point, scan through each point

- O(N) distance computations per 1-NN query!
- O(Nlogk) per k-NN query!

= ==l \\hot if N is huge???
| ~ (and many queries)
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KD-trees
T

Structured organization of documents

- Recursively partitions points P .
Into axis aligned boxes. _:J_

Enables more efficient ‘ o | o
pruning of search space

Works “well” In “low-medium” dimensions
- We'll get back to this...
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KD-trees
I

KD-tree construction

®e ® . Start with a list of
v % d-dimensional points.
[ ]
j oo o .’ ° ---
T L L ] ™ 1 0.00 0.00
L’ 2 100 4.31
oo’ . 3 0.13 2.85
e - .. L]
Fentnrn| T' GJZ-‘ ;E&fL
. Oelies  (wod V) (word ¥)
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KD

-frees

KD-tree construction

X205

<« 0S8 —>

xh)»>0.6

Split points into 2 groups
Split dimension
E—
NO- \YES
--- ---

0.00 0.00 1.00 431
3 0.13 2.85
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KD-trees

49|
KD-tree construction
s Recurse on each group
i‘? T separately Split dim 1
o Split value 2
g Split dim 2 O ES
Split value 2 @ Pt XU x21
NO ES 2 1.00 431
--- ---
0153 2.85 0.00 0.00
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KD-trees
N

KD-tree construction

.:J.
[ ]
e ¢ o
T *
& L ] o
L
[ ] . b
ol .-' ° b - CS/ \C)
Pﬂ'nﬂ’ﬂ here -
. . . 'Sﬂ.’c{sf-,i all
Continue splitting points at each set  wndifions dowon
- Creates a binary tree structure titf"{"u}p

Each leaf node contains a list of points
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KD-trees
S|

KD-tree construction

EL .:J.' / \ ?wft &
& o [- ; ‘SP e Jvm “:
& [ ] L 3 hm ﬂ% bx
T O
s Y W

SvdEy v

Keep one additional piece of info at each node:
%3~ The (tight) bounds of points at or below node
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KD-trees
N

KD-tree construction choices

Use heuristics to make splitting decisions:

- Which dimension do we split along?
widest (or alternate)

— Which value do we split at?

median (or _center point of box,
14n0ring dake in box )

- When do we stop?

fewer thon m  pts \ef &
or

——

box  hits  mini mum width
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KD-trees

Many heuristics...

{4

lULJ,J,anem‘ | P=os

I P gt T Tpﬁ

'iwm’gﬁ

g
il

o

—TLLCE R

median heuristic center-of-range
heuristic
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Nearest neighbor with KD-trees
=

Traverse tree looking for nearest neighbor to query point
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Nearest neighbor with KD-trees

55
o%e ° ° ﬁ705
s A /O\\\lﬁ
co e | ° o
‘T I /\) o“/ \o
5 oo oie O/Ef),d/\b\b d/cfbb
05

1. Start by exploring leaf node containing query point
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Nearest neighbor with KD-trees

i Bl /\) ne
ARSI EEAY. e

1. Start by exploring leaf hode containing query point
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Nearest neighbor with KD-trees

)1
\o

AN
/

\,
o d\b\b gcj:bb

ofo"o/

1. Start by exploring leaf hode containing query point
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Nearest neighbor with KD-trees

=
T NN
1 e Ll CRANAYER

1. Start by exploring leaf node containing query point
2. Compute distance to each other point at leaf node
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Nearest neighbor with KD-trees
=

Does nearest neighbor have to live at

e®e _~ leaf node containing query point?
_ distenct <0 O
NN Sownd 0 607
°e o O/ \O
R o"{ }’\o &O\g %O\o
.. .:.:_. ] d/ b Cj/ b d/ b

1. Start by exploring leaf node containing query point
2. Compute distance to each other point at leaf node
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Nearest neighbor with KD-trees
o~

Update distance bound when new
~ nearest neighbor is found

1. Start by exploring leaf node containing query point
2. Compute distance to each other point at leaf node

3. Backtrack and try other branch at each node visited
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Nearest neighbor with KD-trees

_ 61 |
~
%o ® . /__ A‘W: bm{h’
e é“"" “‘/O\

e
. oo d/d’\b\o cj’d/‘o\b of ‘5%

} T m AR

Use distance bound and bounding box of each node to
prune parts of tree that cannot include nearest neighbor
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Nearest neighbor with KD-trees
e

® o Q

BRI

Use distance bound and bounding box of each node to
prune parts of tree that cannot include nearest neighbor

P
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Nearest neighbor with KD-trees

Use distance bound and bounding box of each node to
prune parts of tree that cannot include nearest neighbor
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Nearest neighbor with KD-trees
I

Complexity AR,

For (nearly) balanced, binary trees...

. (EOQZS;I’U'(;:‘?T nodes € | datept ax each leaf — O CND

- Depth: Q{104 WD
~ Median + send points left right;: O (N) ot every level of the tree
— Construction time: O(W 155 N
 1-NN query
— Traverse down tree to starting point: DC\Df) B
- Maximum backtrack and traverse: O(N) ‘n worst case

- Complexity range: 0(1,,5 V)— OC(ND

Under some assumptions on distribution of points,
we get O(logN) but exponential in d

____————;-::—_____‘
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Nearest neighbor with KD-trees

Complexity
T [T
g el
:LV (i ¢ okt ﬁ}L\
iR N

ey
(]
o
c| © o o <
o (]
[+]
I —— x‘\-\..__\___ 1 o
Iy [+]
(n]
o

|li ]
oF
pruned many pruned few
(closer to O(log N) ) (closer to O(N) )
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Complexity for N queries
T

* Ask for nearest neighbor to each doc
N qu,u'"lts
* Brute force 1-NN:
O(WN)
* kd-trees:
O(NVeg N> —» D (N

N oo
T P or

Big
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Complexity for N queries
2
Inspections vs. N and d

exp(d) trend

log(N) trend

# inspections

3 8 g & E g g g

# inspections
8

(wrne d

I P

7 a9 11 13 iﬁ
d X;G&ﬁk

Z |8
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k-NIN with KD-trees

distance to 2" nearest neighbor
0% ° a / in 2-NN example

L t L O
L .. L e o\)

- ®
S dé&b&o\g%)%
N 8 S8

Exactly same algorithm, but maintain distance to
furthest of current k nearest neighbors
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Approximate k-NN with KD-trees

Before: Prune when distance to bounding box > r
Now: Prune when distance to bounding box > r/

Prunes more than allowed, but can guarantee that if we return a
neighbor at distance r, then there is no neighbor closer than r/ o

i L A Ao
e | o - ; o/ \O
) .° T e /\; o’/ \‘o
5 :.:_. . of \bd/d’\bbdp’\b‘b &E

Saves lots of search

time at little cost in
quality of NN!

™~ Bound loose...In practice, often closer to optimal.
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Closing remarks on KD-trees
B

Tons of variants of kd-trees

- On construction of trees
(heuristics for splitting, stopping, representing branches...)

- Other representational data structures for fast NN search
(e.g., ball trees,...)

Nearest Neighbor Search
- Distance metric and data representation crucial to answer returned

For both, high-dim spaces are hard!
- Number of kd-tree searches can be exponential in dimension
* Rule of thumb... N >> 29 Typically useless for large d.
- Distances sensitive to irrelevant features

* Most dimensions are just noise = everything is far away
* Need technique to learn which features are important to given task
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KD-tree in high dimmensions
B

» Unlikely to have any data points
close to query point

+ Once "nearby” point is found,
the search radius is likely to
Intersect many hypercubes
In at least one dim

+ Not many nodes can be pruned

+ Can show under some conditions
that you visit at least 29 nodes
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Moving away from exact NN search
I

* Approximate neighbor finding...

- Don't find exact neighbor, but that's okay for
many applications

Out of millions of articles, do we need the closest
article or just one that's pretty similar?

Do we even fully trust our measure of similarity???

* Focus on methods that provide good
probabilistic guarantees on approximation
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Locality Sensitive Hashing (LHS)

as alternative to KD-trees
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Locality sensitive hashing
I

Simple “binning” of data into 2 bins

Score(x) = 1.0 #awesome — 1.5 #awful

Like a decision boundary

= in classification
=l Score(x) <O
#“.
4
3 2D Data Sign(Score)
2 X = [0, 5] -1
1 X, = [1, 3] |
o X5 = [3, O] 1

#Hawesome
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Locality sensitive hashing

Using bins for NN search

x; = [0, 5] -1 0 candidate
o = o ‘\

-1 0 €«——= neighbors if

xs = [3, 0] 1 1 / Score(x)<0

| #awful

Only search here for
queries with Score(x)>0

#Hawesome, .
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Locality sensitive hashing
76 |

Using score for NN search
2D Data | Sign(Score) | Binindex

x, = [0, 5] -1 0 candidate
x; = [1, 3] -1 0 :\ neighbors if
xz = [3, 0] 1 1 / Score(x)<0
: - HASH
List containing {1.2.4,7,..} {3,5,6,8,...}

TABLE

iIndices of datapoints:

\

search for NN
amongst this set
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Locality sensitive hashing

I

Provides approximate NN

Nearest neighbor to
query point found? NO

| #awful

Hawesome
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Locality sensitive hashing
I
Three potential issues with simple approach

1. Challenging to find good line

2. Poor quality solution:
- Points close together get split into separate bins

3. Large computational cost:

- Bins might contain many points, so still
searching over large set for each NN query

List containing {1,24,7,..} {3,5,6,8,...}
indices of datapoints:
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Locality sensitive hashing

=

How to define the line?

Crazy idea:
Define line randomly!

| #awful

Hawesome
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Locality sensitive hashing
i

How bad can a random line be?

Goal: If x,y are close (according to cosine similarity),
want binned values to be the same.

Both points
In bin O

#awful

QO = N W NG

Hawesome
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Locality sensitive hashing

How bad can a random line be?

Goal: If X,y are close (according to cosine similarity),
want binned values to be the same.

=
=
[1v)
A y
Both points
X INn bin 1
4 Hawesome
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Locality sensitive hashing

Goal: If x,y are close (according to cosine similarity),
want binned values to be the same.

:#tavvful

One point in
bin 0 and

otherin bin 1

ar © ffawesome
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Locality sensitive hashing

How bad can a random line be?

Goal: If x,y are close (according to cosine similarity),
want binned values to be the same.

#awful

y Binsare
different

Bins are
the same

If B, is small (x,y close),
unlikely to be placed
iINnto separate bins

Bins are
the same

Hawesome
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LSH: improving efficiency

Reducing search cost through more bins

Bin index:
[0 0 O]

Line 2

Bin index:
[0 10]

“Hawful

o = (N} (N Fu :

Linel Binindex:
[110]

Line 3

Bin index:
[111]

H#awesome
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LSH: improving efficiency
B

Using score for NN search

2D Data Sign Bin1 Sign Bin 2 Sign Bin 3
(Scc:-rel} index (Scorezl index (Scoresl index

x, = [1, 3] -1 0 -1 0 -1 0
x5 = [3, 0] 1 1 1 1 1 1

Data {1.2} == {4,8,11} == == == {7.9.10} {3.5.6}

indices: \

search for NN
amongst this set
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LSH: improving efficiency
B

Improving search quality by
searching neighboring bins

v
[00O] [[001] [[010] |[011]
=2 =3
Data {1,2} -- {4.8,11} -- -- -- {7.9.10} {3,5,6}
| indices: ' |
) Bin index:
Query point here, = 000 Line2
: = Bin index:
4 Linel Binindex:
Not necessarily 3 e
> Line 3
Even worse than before...Each line can split pts. 1 [E;i'z il']’de’“
Sacrificing accuracy for speed
1 J Y P . S 01 2 3 4 .. gawesome
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LSH: improving efficiency

Improving search quality by
searching neighboring bins

Bin [000] [001]

[010] [011] |[[100] |[[101] [110] [111]
=5 =6 =7

indices: S
\ / Binjndex:
Next closest =

binS 4 inel Binindex:
(flip 1 bit) |

Hawful

Bin index:
111]

- Hawesome
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LSH: improving efficiency

Improving search quality by
searching neighboring bins

[000] [001] .OLJ] 011] ([100] [[101] [110] (1110

=3 =6 =
Data {1,2} {4,8,11} {7,9,10}§ {3,5.6}
indices:
Further bin

Bin index:
(flip 2 bits)

000]  Line2
Bin index:
@ [010]
Linel Binindex:
[110]

Line 3

#Hawful

= NN

Bin index:
[111]

01 2 3 4 .. gawesome .
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LSH: improving efficiency
B

Improving search quality by
searching neighboring bins

Bin [0001 10011 10101 [011) [[100] (101 (1101 |[M11)
=6 =7
Data {1.2) 4811 - -- - 79101} {3.5.6}
indices:
. . Bin index:
Quallty of retneved NN can only 5 000 Line2
iImprove with searching more bins 2 Bin index:
& o 01O}
Algorithm. 4 Inel Binindex:
o . . [110]
Continue searching until g Line 3
computational budget is reached 1 airzil?dex:
N or quality of NN good enough 0 1 2 3 oo
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LSH recap
B

pam—

* Draw h random lines

« Compute “score” for each point
under each line and translate to
binary index

» Use h-bit binary vector per data
point as bin index

kd-tree competitor
data structure
A

__* Create hash table

« For each query point x, search bin(x),
then neighboring bins until time limit

20/11,27/11 2024



LSH: moving to higher dimmensions d

KN
Draw random planes

X[2]

S
“g X[g]
+
@&
O
X Score(x) = awesome
+ V5 fFFgwiul
#awesome x[1] + Vo #great
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LSH: moving to higher dimmensions d
7
Cost of binning points in d-dim

—

») .
Score(x) = VZ'#awesome Per data point,

. x | need d multiplies
AL #l-éWfUl to determine bin

g
~ _ . ) some '?‘?\“T"‘
i v, & S

One-time cost offset if many

queries of fixed dataset
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What you can do now ...
B

* Implement nearest neighbor search for retrieval tasks

» Contrast document representations (e.qg., raw word
counts, tf-i1df,...)
- Emphasize important words using tf-idf

» Contrast methods for measuring similarity between two
documents

- Euclidean vs. weighted Euclidean
- Cosine similarity vs. similarity via unnormalized inner product

» Describe complexity of brute force search
* |Implement KD-trees for nearest neighbor search
* |Implement LSH for approximate nearest neighbor search

» Compare pros and cons of KD-trees and LSH, and decide
which i1s more appropriate for given dataset
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Clustering:

An unsupervised learning task
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Motivation
s

Goal: Structure documents by topic

Discover groups (clusters) of related articles

SPORTS WORLD NEWS
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Motivation

9
Why might clustering be useful?

| dont’t just
like sport!

0.6 -
05 -
0.4 -
0.3 -
7} 3
0.1 —
o X (/3
&N & &
G}Q 'o& !
RO o
(&C‘
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Motivation

Learn user preferences

Set of clustered documents read by user

Use feedback
to learn user
preferences
over topics

Cluer Cluster 4
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Clustering: a supervised learning
o

What if some of the labels are known?

Training set of labeled docs

ENTERTAINMENT _ SCIENCE

20/11,27/11 2024



Custering: a supervised learning
x

Multiclass classification problem

Example of

supervised learning
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Clustering: an unsupervised learning
oo

No labels provided

.uncover cluster structure
from Input alone SN

Input: docs as vectors X
Output: cluster labels z,

An unsupervised

learning task

U word T counts
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What defines a cluster ¢

Cluster defined by
center & shape/spread

Assign observation X; (doc)
to cluster k (topic label) if s
o cluster k (topic label) | oz t—61)

- Score under cluster k is d
higher than under others

- For simplicity, often define
score as distance to cluster
center (ignoring shape)

20/11,27/11 2024



Hope for unsupervised learning

102 |
Easy SR
= .
Impossible ;
i
INn between
—_—
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Other (challenging!) clusters to discover

Analysed by your eyes

0

Twn spirals Chusterin cluster nmers

10 g
FEf s
i .%
i HY

=1
=
L - T .
EEHBCABEF
PR LR
CERN LN EE
e TR
e o
oy TR
g i
ot e
= O =
=] o
=,
i,
i
S

05 0 & 10
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Other (challenging!) clusters to discover

Analysed by clustering algorithms

g!lllln'lﬁ!
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k-means

clustering algorithm
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k-means clustering algorithm
O

Assume

-Score= distance to
cluster center
(smaller better)

CLUSTER
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k-means clustering algorithm

0. Initialize cluster centers
M1y 2y ooy

B NN
@

[]
[]
[]
Q.

g
[

(K-3 d*&&(s_)
B B
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k-means clustering algorithm
o

0. Initialize cluster centers

1. Assign observations to
closest cluster center

2 \orono:
Zi | ,UJ] Xi||2 kesselation
2 ?
(W clwster .4n o3 Gﬂf . "" ;
W~ A VISual Bng
h Ty ) (6 iseeliis
Inferred label for obs i, whereas Vou don “+
supentised learning has&given label y; 2:2& o
. Mpuke Y
by 3 O Pute tris)
(oo ‘%w‘“’p”:\gf"".‘n o
()»‘F'/‘),s“" M&Xﬁ“&,ﬁ,)
"6
' aﬁiyw‘k
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k-means clustering algorithm
N

0. Initialize cluster centers

1. Assign observations to
closest cluster center

2. Revise cluster centers /
as mean of assigned

observations
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k-means clustering algorithm

0. Initialize cluster centers

1. Assign observations to
closest cluster center

2. Revise cluster centers
as mean of assignhed
observations

3. Repeat 1.4+2. until
convergence
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k-means as coordinate descent algorithm
111 |

1. Assign observations to closest cluster center

i — argmin||u; — x|

2. Revise cluster centers as mean of assigned
observations

equivalent to
Z T
1:2;=]

py e argmin > [lu = xil

1:z;=]
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K-means as coordinate descent algorithm
112

1. Assign observations to closest cluster center
. 2
2 ¢ argmin ||p; — xi[3
J

2. Revise cluster centers as mean of assigned
observations

pj = argmin Y [l — x| [3
H 1:2i=]

Alternating minimization

1. (zgiven y) and 2. (u given z)
= coordinate descent
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Convergence of k-means
s [

Converges to:

- Glo um Because we can cast k-means as coordinate
descent algorithm we know that we are
-|[Local optimum

converging to local optimum
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Convergence of k-mans to local mode

15 —— 15
] ]
10 | LR 10 | ® o
b [} . o
o o e 00
5 . | 5 o A
:'0. ™ oy v
cpd epde ,°
0 cady 0 ca k-
+ L) e o ° L) o o
.'. ....
[ ] ]
i o. .. ° . L 5 0.0'.. o ° ®
° )
%, o&fe
P " o o @F "
8 % 9 2 0 2 4 6 8 Yo 8 6 4 2 0 2 4 & 8

Crosses: initialised centers
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Convergence of k-mans to local mode

15 T T T T T T T T 15 T
[ ] [ ]
10 . 10 L
] ° [ ]
. '. ] .'.
5 5| . ®
,... S = ... ] [ ]
':- ¥ R
L L e
of 0 * 8, A%
. ° -.f e o
L ]
;-
‘e’ T Y X ¢« %
-5 . ." > -5 ™ g. o
. e ° °
* ¢ . ¢ @ ®
—].D L 1 1 1 L i L _1[} 1 1 i L 1
-10 & € 4 -2 0 2 6 -10 8 & 4 -2 0 2 6

Crosses: initialised centers
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Convergence of k-mans to local mode

15 T L] L] T T L] T T 15
. ®
10 ", 10 | * 5 | Assigment
o o to which group
* ¢ has changed
I . s 0 [ ] g
51 . . - 5t . e :
'Y % 9 u - % /
. A P
cpd cpde
% *
0 ‘A l ol ‘5 ¢ k-means very
e '00' ¢ o ¢ y ¢ o sensitive to
. ™ initiased centers
. ’ e . oo, @ ¢ 9 ¢
Ste '$ . Sle ol o
%
o8y o &g
P ‘ e o Q’ o
_1 i i i i L i 1 i _lu i L i i i i i i
-0 -8 & -4 -2 D 2 4 6 8 -0 -8 6 4 -2 0 2 4 6 8

Crosses: initialised centers

20/11,27/11 2024



Smart initialisation: k-means++ overwiew

Initialization of k-means algorithm is
critical to quality of local optima found

Smart initialization:

1. Choose first cluster center uniformly at
random from data points

2. For each obs x, compute distance d(x) to
nearest cluster center

5. Choose new cluster center from amongst
data points, with probability of x being
chosen proportional to d(x)?

4. Repeat Steps 2 and 3 until k centers have
been chosen
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k-means++ visualised
v §
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k-means++ visualised
119 |
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k-means++ visualised
20 f
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k-means++ visualised
121 |
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Smart initialisation: k-means++ overwiew

G [
k-means++ pros/cons

Computationally costly relative to
random initialization, but the subsequent
k-means often converges more rapidly

Tends to improve quality of local
optimum and lower runtime
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Assessing quality of the clustering

N
Which clustering do | prefer?

15 - - - - - - - T 15 x
e ]
10 ¢ - 2 g 10 L ] e N
e e o
e o° s @9
- N .
:,... L ] ] :... L ] -
@ ,’. ® ® ’--. e®
0 - 0 »
™ l.‘, d ® ® ® ..“ ¢ ] L]
LI P | e % - e 9o @ e % -
'u. .u"
e @ ‘. o e © ‘. o
-10 L L . -10 . L .
—-10 -8 —6 —4 —2 0 2 4 6 8 —-10 -8 —6 —4 —2 0 2 4 6 8
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k-means objective

15 15 -
10} e 5 | W} * . |
| . ‘| :'.._ k-means is trying to
:3-' * :3.' * ¢« minimize the sum of
cpde_ ,° cpde  ,°
) cadd | ca s squared distances:
. l“! o o o 0..: e o '.l'l n of Squ”‘d
o’ ™ *e - "\d ht‘lﬂm T2l
sty ;'L.I a ™ L] | Sl ;.Lt. [ ™ ] | T
..i". -.1", E:E:HH’J_X'JQ
L g e e R R - S e e T j=1l1i:z;=j
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-10 . ! i ! i i i i -
-0 8 & -4 -2 0 2 4 b i}

Cluster heterogeneity

\.g&*‘é"') .

-
W@

%

Measure of qualjty of

given clustering:

k
y: y: ||ﬂj _X'iH%

j=112:2z;,=3

Lower is better!
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What happens to heterogeneity as k increases?

Can refine clusters more and more to the data
- overfitting!
5 o o’owmﬂan}'
Extreme case of k=N:
— can set each cluster center equal to datapoint
- heterogeneity = ) { (ﬁ‘d‘}‘;ﬁ:ﬂ“‘ﬁm se O)

Lowest possible cluster heterogeneity

decreases with increasing k
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127

How to choose k@

Lowest possible
cluster heterogeneity

of
()W"“ un:'.luﬂﬂpk

. but this S .
q . :)uid:‘ a heuristic

# of clusters k
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MapReduce
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Counting words on a single processor

(The "Hello World!" of MapReduce)

Suppose you have 10B documents and 1 machine and
e e
want to count the # of occurrences of each word in the corpus

Code:
Count[ V « int hash toble

for A " AMUM“‘I-ES

for word v d
Count Cumrd]+=l
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Naive parallel word counting

I
« Word counts are | ments idata Qarall;ﬂ
+ Count occurrences in sets of documents seearately, then merge
Machine 1 Machine 2 Machine 1000
Wa —— o O
4 10M 10M 10M
#’ﬁﬂﬂ docs docs docs
County[] Count,[] Countygggl ]

u"""':'v!éﬂ Count[word]= E Count,[word]

ouF
Yo i=1
How do we do this for all words in vocab? ough
w o ‘-"f"t‘. Hﬁwi,. L«jl_n_
Back to sequential problem to merge counts... o) words v
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Counting words & merging tabels

1. Generate pairs (word,count) in parallel
2. Merge counts for each word in parallel

Machine 1 Machine 2 Machme 1000
Phasel: (1 & l"t""“ (w5
parallel éUM ;UM ) éﬁ {...da u.lo)
( ver d ] ocs 0Ccs 0Ccs [mnm

counting Countlll Count,[]

Phase 2: L)) —
parallel 2k o ['w..' o
[over words) BEE words words

How to map words to machines? Use a hash function!

——

Cou ”tlUOD All counts for a

subset of
words go to
same machine

h(word index) 2 machine index

AA

Which werds g X

mathing < -

h: ¥ = [vi.., ﬂ"‘“"‘i"""]
vairh
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MapReduce abstraction

Map:

- Data-parallel ove
e.g., documents

- Generate (key,value) pairs

* "value” can be any data type
f'uhl". 1)
(' meachine!, \)

Word count example:

map(doc)
for word in doc

emit(word,1)
T T

_/ k'y Ullu-l‘.

fuw’, 1y €

( lWﬂ:ﬂﬂ", l)

key list of ya I'u-q

Reduce:
- Aggregate values for each key

- Must be commutative-associative

operation olvabra

- Data-parallel Qz
- Generate (key,value) pairs
reduce ('UW', 11,170, 0,12,21)

T
(aryre = axlbeed

/ ?.
key

emit (tuw! 327 L"’————__

reduce(word, counts_list)
c=0
for iin counts_list
c += counts_listli]
emit(word, c)

\Mu

MapReduce has long history in functional programming
- Popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!
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MapReduce — Execution overwiew

_133
Map Phase Shuffle Phase  Reduce Phase

(uw, 1) (-uw',!-::))

(kyvy) (kyvy)

(kyyvy) § (kyv3)

(ky:vy) X o (ky,v3) 5 | disk
© 2 (kyV) G . ‘5— —_ (kyyvy)
o IR 58 9 1 g v ko
M . £ < : ; =
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Improving performance

Caa |
Combiners

* Naive implementation of MapReduce is very
wasteful in communication during shuffle:

(uw; 1)
uw’, | h(uw): 7
|Hli ( Y )§;I£:=us —_— 7
: o€ (uwil)
(uw) 1)

on H1\
* Combiner: Simple solution...Perform reduce
locally before communicating for global reduce

— Works because reduce is commutative-associative

(uw's D hluw')s 7
i : I : reduce —_—
gy ? (e e
L] uf
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Scaling up k-means via MapReduce
N
MapReducing 1 iteration of k-means

Classify: Assign observations to closest cluster center

4 < angmin||s; — x|

Map: For each data point, given ({p;},x), emit(z;,x;)

Recenter: Revise cluster centers as mean of assigned
observations

Reduce: Average over all points in cluster j (z;=k)
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Scaling up k-means via MapReduce
N
Classification step as Map

Classify: Assign observations to closest cluster center
Zi argnzf_'m |12 — xill5

of cwuster canters
ﬁﬂ',-n mf""'ﬂt
map([Hy, Hp..... Byl X))

2 argmj.iﬂ s — x4]3

. . an8d 'l:)
emit(z; x;) " s allg y
A dokagony a _ dakapoine X
c\uster \obsd

Eﬂ' et CZ; ["1, o,\, -?,O, O, S.:I)
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Scaling up k-means via MapReduce

Recenter step as Reduce

Recenter: Revise cluster centers as mean of assigned
observations

:_ZXI

iz, =k csianed
wear (et dotogoints, 2T
,,f' Uﬂ"! /Z'T (bove Veuy 3)
reduce(j, x_in_clusterj : [x;, X,..., ])
sum = 0 &« oka\ mess in cluscer

count = O «— tokal ¥ of obs. in cluste-

for X in x_in_cluster]

sum += X

count +=1

emit(j, sum/count)
r '““
:l.,ww uﬂ:,..\ w0
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Scaling up k-means via MapReduce
N

Some practical considerations

k-means needs an iterative version of MapReduce
- Not standard formulation

Mapper needs to get data point and all centers
- A lot of datal

- Better implementation:
mapper gets many data points
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Parallel k-means via MapReduce
N

Map: classification step;
data parallel over data points

Reduce: recompute means;
data parallel over centers
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What you can do now ...
N

-

+ Describe potential applications of clustering

* Describe the input (unlabeled observations) and output
(labels) of a clustering algorithm

+ Determine whether a task is supervised or unsupervised

+ Cluster documents using k-means

* Interpret k-means as a coordinate descent algorithm

+ Define data parallel problems

* Explain Map and Reduce steps of MapReduce framework

+ Use existing MapReduce implementations to parallelize k-
means, understanding what's being done under the hood
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Probabilistic approach:

mixture model
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Why probabilistic approach?
o

Learn user preferences

Set of clustered documents read by user

Use feedback
to learn user
preferences
over topics

Cluster 3 Cluster 4
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Why probabilistic approach?
s

Uncertainty in cluster assignments

Hard assignments
don't tell full story

Slightly closer to
Cluster 4 than

Cluster 2, but count
fully for Cluster 47

ter 3

Cluster 4

Clus
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Why probabilistic approach?
R

Other limitations of k-means

Assign observations to closest cluster center
- 2
z; <— argmin ||p; — x4||3
J

N\

Can use weighted Euclidean,
but requires known weights

Only center matters

Still assumes all clusters have
the same axis-aligned ellipses

Equivalent to assuming

spherically symmetric clusters .

O
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Why probabilistic approach?
s

Failure modes of k-means

different shaped/
oriented clusters
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Mixture models
B

* Provides soft assignments of observations
to clusters (uncertainty in assignment)

- e.g., 54% chance document Is world news,
45% science, 1% sports, and 0% entertainment

» Accounts for cluster shapes not just centers

 Enables learning weightings of dimensions

- e.g., how much to weight each word in the
vocabulary when computing cluster assignment
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Application: clustering images

Discover groups of
similar images

s [T e
- Ocean — f ﬁ\ HI!@!I-
nl::_ s BV

- Pink flower -

- Dog = |y Provide groupings |
- Sunset = DUt NOt category

- Clouds

E B
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Application: clustering images

g .
Simple image representation

Consider average red, green, blue pixel intensities

Single RGB vector per image
[R=0.85 G=0.05 B =0.35]
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Application: clustering images

Distribution over all cloud images

Let's look at just the blue dimension

il |

|

||“mHﬂllllum......._ ,

0.8

blue
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Application: clustering images
N

Distribution over all sunset images

Let's look at just the blue dimension

|’

blue
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Application: clustering images
B
Distribution over all forest images

Let's look at just the blue dimension

ulll””“”

1

|

0.42

>
blue
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Application: clustering images
I
Distribution over all images

We see that they are grouping!
But not easy to distinguish between groups

il HHHmm.....[........_,

blue
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Application: clustering images

B
Can be distinguished along other dim

Now look at the red dimension

<>
e e g In this dimmension
| I separable groups!
il ‘ Hhml'.,. .
0.05 red
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Model for a given image type
S5

For each dimension of the [R, G, B] vector,
and each image type, assume a
Gaussian distribution over color intensity

N | p, o2)
‘ parameters
l;! Ih Random variable the
i :i- ' \ distribution is over

e.g., blue intensity

¥ blue
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Model for a given image type
Ciss

2D Gaussians — Bird's eye view

>
3D mesh plot e

qho? o o

R
0.20 o
0.157 :

0.107

>

s oS .
' Cisy

0.057

probability

green

0.00%

>
g

o
c
®
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Application: clustering images

Tise B
2D Gaussians — Parameters

Fully specified by mean gy and covariance 2

H = [Ublue ’ IJgreen]

mean centers the
distribution in 2D

green

20/11,27/11 2024



Application: clustering images

157

2D Gaussians — Parameters

Fully specified by mean p and covariance 2

H = [Ublue , Ugreen]
O
5 _
S = Oblue Oblue,green L
2 O |
D-greer‘l,l:)lL,ue Ugreen
covariance determines L
orientation + spread blue
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Application: clustering images
N
Covariance structures

s - |9°
0
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Application: clustering images

Notating a multivariate Gaussian

N(x \\p, Z)}

/ parameters

Random vector
e.q., [R, G, B] intensities
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Mixture of Gaussians
6o |

Model as Gaussian per category/cluster

B M - it

- _ . --.-
Use blue  FREENEE

o o ||

e ==id.-

g R e I 2 Il e

0.3 blue REQ-

el e S
.E-E ﬂ
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Mixture of Gaussians
S|

Jumble of unlabeled images

HISTOGRAM

How do we model
this distribution?
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Mixture of Gaussians
e |

What if image types not equally represented?

e.g., forest images are very

<ikely In the collection

0.8.42
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Mixture of Gaussians

163
Combination of weighted Gaussians

Associate a weight 11, with each Gaussian component

LIS 1T, Tl 0 < T, < 1
™ =[0.47 0.26 0.27/]

M, \//" ;Trk:l

Relative proportion of
each class in world from
which we get data

Lk
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Mixture of Gaussians

Cea |
Mixture of Gaussians (1D)

Each mixture component represents

a unique cluster specified by:
2

{njﬁ, H,, O}

1
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Mixture of Gaussians
s |

Mixture of Gaussians (general)

Each mixture component
represents a unique cluster
specified by:

{Tﬂ{ . M, Zk}
E”z3
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Mixture of Gaussians

According to the model...

Without observing the image content, what's the
probability it's from cluster k? (e.qg., prob. of seeing "clouds” image)

;:E“ A p(zl — k) = T pror

N =

Given observatior@s from cluster_k, what's th
likelihood of Seeing )(i? (e.g., just look at distribution for "cloyds”)

p(x; | zi =k, e, X)) = N (x| e

i o g mk'
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Application: clustering documents

167

Discover groups of related documents
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Application: clustering documents

Document representation
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Application: clustering documents

ceo §
Mixture of Gaussians for
clustering documents

Space of all documents
(really lives in RY for vocab size V)

Make soft assignments
of docs to each
Gaussian
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Application: clustering documents

Counting parameters

Each cluster has {11, , B, 2, }
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Application: clustering documents

Counting parameters

Each cluster has {11, , K. 2}

INn V (vocab size) dims:
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Application: clustering documents

Restricting to diagonal covariance

Each cluster has {11, , y,. 2, diagonal }

V params
o,° \
o O
2 = 0—32
NG _/
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Application: clustering documents

Restrictive assumption, but...

— Can learn weights on dimensions
@ (e.g., weights on words in vocab)
— Can learn cluster-specific
weights on dimensions

Still more flexible than k-means

Spherically
symmetrlc clusters
Specify weights...
@ @ All clusters have same

axis- allg ned ellipses
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Inferring soft assignments with

expectation maximization (EM)
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Inferring cluster labels
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Desired soft assignments
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What if we knew the cluster
parameters {11, , U,, 2, }?

Compute responsibilities

f\# c,‘.u.itlﬂ :_“g,f :ﬂl‘lﬁ;.t‘.’ -

C f,rt fiv Fak dek d:ﬂf b wtioN
Responsibility cluster k tak{for observation i

/ f&‘lm
Eﬁc_:p(% =k | {’%,M;: J};; 1 _%)

verbolt\o probability of \

Vi .
assignment given model
to cluster k parameters and
observed value
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What if we knew the cluster
parameters {11, , M, 2, }?

Responsibilities in pictures

Green cluster
takes more
responsibility

Blue cluster
takes more

responsibility

Uncertain...
split
responsibility
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What if we knew the cluster
parameters {11, , M, 2, }?

178

Responsibilities in pictures

Need to weight by cluster probabilities,
not just cluster shapes

Still uncertain,

but green cluster seems
more probable...

takes more responsibility
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What if we knew the cluster
parameters {11, , M, 2, }?

Responsibilities in equations

Responsibility cluster k takes for observation |

‘(/’
Iil. = Tk N(%‘ | M,::Ek)

How likely is the
Initial probability of observed value x; under

being from cluster k this cluster assignment?

vy wali wnder bhe green clustes
Jm w:‘:{h vhe prior -1? qreen hf.'nl-zf
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What if we knew the cluster
parameters {11, , M, 2, }?

150
Responsibilities in equations

Responsibility cluster k takes for observation |

ik = Tk N(ZI??, | LL;C,E;,J)

K

§ :WjN(mi | g, Ej) Normalized
j:]_ - over all
possible
cluster

assignments

—
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What if we knew the cluster
parameters {11, , M, 2, }?

a1 |
Recall: According to the model...

Without observing the image content, what's the
probability it's from cluster k? (e.g., prob. of seeing "clouds” image)

p(z; = k) = mg

Given observation x; is from cluster k, what's th
likelihood of Seeing )(i? (e.g., just look at distribution for "cloyds”)
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What if we knew the cluster
parameters {11, , M, 2, }?
182

Part 1: Summary

Desired soft assignments
(responsibilities) are easy
to compute when
cluster parameters

{1, . U, 2, } are kKnown

But, we don’'t know these!
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Imagine we knew the cluster
(hard) assignments z,

Estimating cluster parameters

Imagine we know the
cluster assignments

Estimation problem

decouples across
clusters

~~__Is green point informative of
fuchsia cluster parameters?

NO!
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Imagine we knew the cluster
(hard) assignments z,

Data table decoupling over clusters

R G B Cluster
x[1] x,[2] x,[3] 3
%,[1] X,2] X,[3] 3
x3[1] X512] X313] 3
X4[1] %,[2] X4[3] 1
xs[1] X:[2] x:[3] 2
X¢[1] X¢[2] X¢[3] 2

Then split into separate tables and consider them independently.
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Imagine we knew the cluster
(hard) assignments z,

Maximum likelihood estimation

R G SRSl Estimate {11, , 1, 2, }
xy(1] (2] X (3] e giVEﬂ data aSSigﬂed
x5[1] x,[2] x;[3] 3
il .2 %3] - to cluster k

maximum likelihood estimation

(MLE)

Find parameters that maximize the
score, or likelihood, of data
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Imagine we knew the cluster
(hard) assignments z,

N
Mean/covariance MLE

Cluster
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(K:74

Imagine we knew the cluster

(hard) assignments z,

Cluster proportion MLE

R G B Cluster
X,l1] x,[2] X,[3] 1

R G B Cluster
xs[1] Xc[2] xc[3] 2
xgl1] Xg[2] x¢[3] 2

Cluster
x,[1] x,[2] X,[3] 3
X5[1] X5[2] X5[3] 3
X3[1] xz[2] X3[3] 3

# obs in cluster k

total # of obs

True for general mixtures of i.i.d. data,

not just Gaussian clusters
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Imagine we knew the cluster
(hard) assignments z,

Part 2a : Summary

needed to compute soft assignments

Ll Cluster parameters are simple
¥ .y to compute if we know the
. 'f,:sé!'}: ", cluster assignments
?" L .; ':‘i: i‘.'. '.
] - . .'}'. o.'
a® % S -V
‘et A
I But, we don't know these!
" .
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What can we do with just
soft assignments r;?
0|

Estimating cluster parameters
from soft assignments

S Instead of having a full

B , ,

Saed oo observation x; in cluster kK,
s_g‘ d' just allocate a portion r;,
.y ‘ '\i:ha\:;

-:‘Q.t.i' " i } e t". .
. .‘ :“?‘:‘" \ ‘

X, divided across all clusters,
as determined by r,,
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What can we do with just
soft assignments r;?

Maximum likelihood estimation
from soft assignments

Just like in boosting with weighted observations...

R G B riq Fio riz
% [1] x,[2] x(3 | 030 | 018 | 0524
%,[1] %521 x,31 | 001 | 026 | 073 \
x5[1] X5(2] xs(3] | 0.002 | 0.008 | 0.99
X4 [1] X,[2] x,3 | 075 | 010 | 015 52% chance
this obs is in
x5[1] X5[2] xs3] | 005 | 093 | 0.02 Cluster 2
xc1] xc[2] x[3] | 013 | 086 | o001
Total weight in cluster: | 1.242 | 2.8 | 242

(effective # of obs)
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What can we do with just

soft assignments r;?

Maximum likelihood estimation

from soft assignments

X3[1]

X411 ]

G

R

G

B

B

Cluster 1

weights

Cluster 2

weights

xXs[1] | Cluster 3
xc[1] weights

x 1 | xl1] x,[2] X, [3] 0.52

xc[1] x5[1] X-[2] X5[3] 0.73

xg[1] xz[1] xz[2] Xz[3] 0.99

X4[1] x4[2] X4[3] 0.15

Xs[1] x5[2] X5[3] 0.02

xg[1] xg[2] xg[3] 0.01
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What can we do with just

soft assignments r;?

Cluster-specific location/shape MLE

R G B ‘weigns
x,[1] x,[2] x,[3] 0.30
x[1] X,[2] X[3] 0.01
xs[1] X5[2] X;[3] 0.002
x,[1] X4[2] X4[3] 0.75
x:[1] X:[2] Xc[3] 0.05
xc[1] Xe[2] X[3] 0.13

1 N
Hk = j‘\,TSOft Zrik; ;

Compute cluster parameter estimates
with weights on each row operation

Total weight in cluster k

ffective # ol
— off . e
= elrecuve # ODS
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What can we do with just

soft assignments r;?

MLE of cluster proportions 7.

Mt M2 riz
030 | 018 | 052
001 | 026 | 073 Arsoft
0.002 | 0.008 | 099 A~ AV
05 | 010 | 015 | =~ N oo
: : : . soft _
005 | 093 | 002 Ne ™ = Z Tik
013 | 0.86 | 0.01 : - =1
Estimate cluster otal f—F g}tw.: in cluster k
. = glreclive # obs
Total weight (1222 | 25 | 242 proportions from
in cluster: relative weights
Total weight 6
In dataset: \

# datapoints N
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What can we do with just

soft assignments r;?

Defaults to hard assignment case

when r; in {0,1}

Hard assignments have:

- {

1

0 otherwise

1k

R G B Fia Fi2 riz
x[1] x[2] x[3] 0 0 1
X5[1] x3[2] X5[3] 0 0 1
x3[1] Xz[2] X3[3] 0 0 1
X4[1] X4[2] X,[3] 1 0 0
Xs[1] Xs[2] Xs[3] 0 1 0
xg[1] Xe12] X413] 0 1 0

Total weight in cluster: | 1 2 3

N

One-hot encoding of
cluster assignment
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What can we do with just
soft assignments r;?

Equating the estimates...

N ¢ 0.8
. Ngoft VR =3 ) e
T = =1 ovs * . g
N i= «
- N«
: Z /
A Yo
ol .” Sl

NSOftZ®($?’ ) (i — ‘uk) /

.:_,;.m ss obove

- |
4, L, bi- R by
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What can we do with just
soft assignments r;?

N
Part 2b: Summary

o Still straightforward

e,‘ig"f T to compute cluster
parameter estimates

from soft assignments
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Expectation maximization (ME)

An iterative algorithm

Motivates an iterative algorithm:

1. E-step: estimate cluster responsibilities
given current parameter estimates
AN (z; | fu, )

S #iN (i | 1, 55)

2. M-step: maximize likelihood over
parameters given current responsibilities

Fikk =

ﬁ'k: ,ar’kj ik | {Tﬁikw :I:i}
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Expectation maximization (ME)

EM for mixtures of Gaussians
INn pictures — initialization

o) &)
fe& Y
Then wmput't.

M
“:[p52 04 0.08)
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Expectation maximization (ME)
ECR

EM for mixtures of Gaussians
In pictures — after 15" iteration

ﬂ“;ﬁ'.u. I;kl,]“'\DOA ')
given soft assiqn- i

A m A )y 'fﬂg
--?i-n. Ll 2

Then .rupmpu.hf. respon st ey
.
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Expectation maximization (ME)
oo

EM for mixtures of Gaussians
in pictures — after 2"9 iteration

rinse
&

repent
untl mmfn/ﬁ-ﬂﬂfe.
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Expectation maximization (ME)
o

EM for mixtures of Gaussians
In pictures — converged solution

seL
Ll“rl’wn? "
pesignmen of oh'.
te blwe or F""l:""
c.,.hl"*-'.r ; 2k L

finol ossiQ™ '
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Expectation maximization (ME)
R

EM for mixtures of Gaussians
INn pictures - replay
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Expectation maximization (ME)
T

Convergence of EM

* EM is a coordinate-ascent algorithm

— Can equate E-and M-steps with alternating
maximizations of an objective function

« Convergences to a local mode

« We will assess via (log) likelihood of data
under current parameter and
responsibility estimates
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Expectation maximization (ME)
I

INnitialization

- Many ways to initialize the EM algorithm

« Important for convergence rates and quality
of local mode found

- Examples:

- Choose K observations at random to define K "centroids”.
Assign other observations to nearest centriod to form initial
parameter estimates.

- Pick centers sequentially to provide good coverage of data
like in k-means++

- Initialize from k-means solution

- Grow mixture model by splitting (and sometimes removing)
clusters until K clusters are formed
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Expectation maximization (ME)
s

Overfitting of MLE

Maximizing likelihood can overfit to data

Imagine at K=2 example with one obs assigned to
cluster 1 and others assighed to cluster 2
- What parameter values maximize likelihood?

Set center equal to

point and shrink
variance to O

Likelihood goes to oo |
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Expectation maximization (ME)
T
Overfitting in high dims

Doc-clustering example:
Imagine only 1 doc assigned to cluster k has word w
(or all docs in cluster agree on count of word w)

Likelihood maximized by setting y,[w] = x;[w] and crz_k =0

W

Likelihood of any doc with different count on
word w being in cluster k is O!
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Expectation maximization (ME)

27
Simple regularization of M-step
for mixtures of Gaussians

Simple fix: Don’t let variances = O!

Add small amount to diagonal of
covariance estimate

Alternatively, take Bayesian approach
and place prior on parameters.

Similar idea, but all parameter
estimates are "smoothed” via cluster
pseudo-observations.
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Expectation maximization (ME)
o

Relationship to k-means

Consider Gaussian mixture model with  _ gpperical clusters with

equal variances, so relative
likelihoods just function of
distance to cluster center

0-2
> = o2 . .
= — As variances—=>0, likelihood
* .
+ ratio becomes O or 1
L J

- ./ @ - Responsibilities weigh in
cluster proportions, but

dominated by likelihood

Spherically
(az N symmetric clusters

and let the variance parameter o =2 0 disparity
P ’frkN(:r.; | kaEJEI)
) . ik = 5K A
Datapoint gets fully assigned to > i1 7N (i | fij, 021)

nearest center, just as in k-means
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Expectation maximization (ME)

204
Infinitesimally small variance EM
= k-means

1. E-step: estimate cluster responsibilities given
current parameter estimates

-~ . - 2
P N (x; | fig, o°T) c {0.}, 1}

K - -
> i1 TN (i | 1y, 021)
Decision based on

Infinitesimally small distance to nearest
cluster center

2. M-step: maximize likelihood over parameters
given current responsibilities (hard assignmentsl!)

ﬁk:ﬁk | {?ﬁika mi}
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What you can do now ...
S [

* Interpret a probabilistic model-based approach to
clustering using mixture models

* Describe model parameters
« Motivate the utility of soft assignments and describe
what they represent

* Discuss issues related to how the number of parameters
grow with the number of dimensions

- Interpret diagonal covariance versions of mixtures of Gaussians

« Compare and contrast mixtures of Gaussians and
k-means

+ Implement an EM algorithm for inferring soft
assignments and cluster parameters
- Determine an initialization strategy
- Implement a variant that helps avoid overfitting issues
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Mixed membership models

for documents
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Clustering model
iz

So far, clustered articles into groups

Doc labeled
with a topic
assignment

Clustering goal: discover groups of related docs
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Clustering model
s

Are documents about just one thing?

Is this article
just about
science?
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Clustering model

Soft assignments capture uncertainty

Soft assignment r;,
tells us this doc
could be about world
news or science

But, clustering
model still specifies
each doc belongs to

1 topic
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Soft assignments

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Dransin F. Wulin®, Emily B. Fox®, Brian Litt*P
“Department of Ricengineering, University of Pennsyivania, Philadelpkia, PA
 Department of Newrology, University of Pernsylvania, Philadelphia, PA
=Departrnent of Statistics, University of Washington, Seattle, WA

Abstract
wi can_ manifest short, sub-clinical opileptic “bursts” in
n to full- We beliove the relationship between

these two classes of events—something not proviously studied quantitatively—
could vield important insights into the nature and intrinsic dyvnamies of
ovonts

A poal of our work is to parse these complex
into distinet dynamic regimes. A challenge posed by the intracran
(IEEG) data we study is the fact that the number and placement of electro
can vary betweon| We develop a Bayesian nonparametric Markov
switching process ows for (i) shared dynamic regimes between a vari-
able mumber of channels, (ii) asynchronous regime-switching, and (jii) an
mmknown dictionary of dynamie regimes. We encode a sparse and changing
sot of dependencies botween the channels using a Markov-switching Gaussian
graphical model for the innovations proeess driving the channel dynamics and
demonstra jmportance of this model in parsing and out-of-sample pre-
dictions o data. We show that our model produces intuitive state
amignments that can help antomate i and enahle
the comparison of sub-clinical bursts

Keywords:  Bayesian nonparametric, EEG, factorial hidden Markov model,
graphical model, time sories

1. Imiroduction

Dieapite over three decades of research, we still have very little idea of
nes a This ignorance stems both from the complexity of
as a and a pancity of quantitative tools that are flexible

Encoding of cluster
membership z, = 4
Based on science

related words, maybe
doc in cluster 4
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Soft assignments

Modeling the Complex Dynamiecs and Changing
Correlations of Epileptic Events

Drausin F. Wulsin®, Emily B. Foxe®, Brian Lit®

stamnfwm;g, University of P yivanin, Philodelphia, PA EnCOdlng Of ClUSter
e e e e T membership z, = 2

Abstract Or maybe cluster 2
Patients with epilepsy can manifest short, sub-clinical epileptic “bursts” 1r1 (tEChnOlOgy) |S a better ﬁt

Soft assignments 1
capture uncertainty £

Nz =2or4

i TVTEE = model in parsi n.nd c:rub—of—sample pre-
d.muu-ns of iEEG data. We show that our roduces intuitive state \\}
assignments that can help) linical analysis of seizures and enahble (J :,Qo CI
the comparison of sub-clini ursts and full elinical seimmres. G

K. BRI 0. ctrl o RG]
SRS oo, e serics

1. Imtroduction

Despite over three decades of research, we still have very little idea of
what defines a seigure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of guantitative tools that are flexible

20/11,27/11 2024



Soft assignments

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Drausin F. Wulsin®, Emily B. Fox®, Brian Litt®®

o Department of Bicengineering, University of Penmsylvania, Philadelphia, PA
® Department of Newrology, University of Penneglvania, Philadelphia, P4
“Department of Statistics, University of Washington, Seattle, WA

Abstract _ Really, it's about science
e : and technoloagy

additon to -blown
these two classes of events—something not previously studied quantitatively
rield important insights into the nature and intrinzic dynamics of

T
dictions of]
assignments that can hel
the comparison of sub-clinical

maodel, time series

1. Introduction

Despite over three decades of research, we still have very little idea of

: ines alseigure] This ignorance stems both from the complexity of
and a paucity of quantitative tools that are flexible

20/11,27/11 2024



Mixed membershio models

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Dirausin F. Wulsin®, Emily B. Fox®, Brian Linb

“Depariment of Bicengineering, University of Pennayivania, Philodelphia, PA
¥ Departmnent of Neurology, University of Pennsylvania, Philadelphia, PA
= Department of Statiatics, University of Washingion, Seaitls, WA

Abstract

=
addition to full- Tl

can manifest short, sub-clinieal opileptic “bursts” in
We beliove the relationship between

these two classes of events—something not previously studied quantitatively
could vield important insights into the natore and intringic dvnamics of
ovents

A poal of our work is to parse these complox
into distinct dynamic regimes. A challenge posed by the intracrand

(IEEG) data we study is the fact that the number and placement of electro
can vary hmmﬁ Wo dovelp m
switching process that allows for shared QVIAINIE Terimes Detwoel 4 varl-
able number of channels, H awitching, and (iii) an
unknown dictionary of dynamic regimes. W d chan
5ot of depondencies botween the channels using a mﬂ
ﬁmu{lﬂ:l for LhMm&m& driving the cl | dynamics an
MOTIELTA 5

jImpor = model in parsing and out-of-sample pre-

dietions o
assignments that can help)

1. Imiroduction

Despite over three decades of research, we still have very little idea of

Mnm g Thizs ignorance stems both from the complexity of
as a

and a paucity of quamitative tools that are flexible

Mixed membership
models

Want to discover a
set of memberships

(In contrast, cluster models
aim at discovering a single
membership)
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Building alternative model
s

An alternative document clustering model

(Back to
clustering,
not mixed
membership
modeling)
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Building an alternative model
N

So far, we have considered

Modeling the Complex Dynamics and Changing
Cormelations of Epileptic Events

Drausin F. Wulsin®, Emily B. Fox®, Brinn Litt*®

e of Moot Grierety of oo, Phedciin B4
Dipar  of St Unnsoasty of Weshingion, Scatiic, WA

Abstract

Patients with opilepsy can ifesit short, sab-climical epileptic “bunss™ in

nddition to fallblown clinseal seisurmes. We believe the relationship between x —
theme twn ol isses of events—something not previously studied gquantitatively I

could yieki important insights imto the nature and intrinsic dynamics of

seizures. & goal of our work = to parse these complex epileptic events
imto distinet dynamic regimes. A challenge posed by the intracranianl EEG
(EEEQ) data we stady is the fact that the namber and placemest of dectrodes
can vary betwesn patients. We develop & ]!nyulnn monparametric Markow | L

switching process that allows for (i) shared d.rnl imes between o vari- — I V =c1 o
nble number of channels, (5] asyochronous n
unknown dictionary of drnn.rnlc regimnes. 'We encode

dictioss of IEEQ data. We show that car modd prodoces i
mssignmenis that con help automate climical anolysis of s
the comparison of sub-clinical bursts amd full clinical seizures.
Keyworads: Bayminn nomparametric, EEG, factorinl hidden Markow mi
Eraphica]l moded, time serims

L. Introduection

Ihesspite over three decades of research, we still have very lictle iden of
wh.ld. defines u seiare. This ignorance stems both from the complexity ol
pay a8 & di and & ity of guantitative tools thot are Aexible

T
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Building an alternative model
T

Bag-of-words representation

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Drausin ¥. Wulsin®, l".nily B. Fox®, Brmn Litt*®
2 Department of B y of Penmnyts n..x.dd,l... PA

'ogrm..m Nﬂpd-”(hu-:r of Porsuphuania, Philedcipbia, P
Dq-un:tnf“" m'!./ glon, Sctde, WA

Abstract

Patients with epilepsy can manifest short, sub-clinical qnlcptu: ‘bunnts" mn
aidition to fall-blown clinscal sei We beli the relats

these two classes of events — soanethi n:m.uln:ly

could yieki important insights IH‘W dynamics of
slsxun:x_ A goul ol ur | = to these lew/epileptic events
imo ge posed by the introcranial EEG
(3Kl LC) he number and placemesit of clectrodes
can vary bcn\-em pnn:nus. We develop a lhyumn nonparunﬂ.nc Mnrkuv

switching process that allows for (i) shared
able number of chamneds, (i) asynchrono

unknown dictiomary of dynamge mgineg. We encodn: o =pd and changimg
set of dependenci wing a Mark itching G 2
gruphical mode fi driving the channel dy umuz and

demonstrate the importance of this moded in parsing and out-of-sample pre-
dicty f iEEC data. MWe show that our model produoces imtuitive state

]| a te climical analysis of sczures and enable
£ and full clinical setzures.

o
Kegwords: Baymsian nomparametric, EEC, factorial hidden Markov model,
gruphical moded, time seris

1. Introduction

Despite over three decades of rescarch, we =till have very little idea of
whn definess n wezzure. This :gnnrnncfwnlboth from the complexity of
pilepsy as a di and a § v of itative Lools that are flexible
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Building an alternative model
T

Bag-of-words representation

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Evonts

Drzusin F. Wulsin®, Emily 0. Fax®, Brinn Litt™®
e g, L y of Penmayivania, Phildciphia, Pl
Pl i

'uTn—m Nowolegy, Uni P
Dw:ru of Staieetics, Lrnwn?:lqr W’u'un.pm‘ E—Mr WA

Abstract
Patients with epilepsy can monifest short, subclinical epileptic *bursts™ in

nebditi Fall-blown clinienl sch We belicve the relationship bet x { d l l l

L ol ofevest et hiog sk preeiously s quasttatinly | modelting, complex, eplepsy,
Id yickl impaortant insights isto the nature and intrinsic dynamices af

e Tk o e v e e ot elopie ot modeh ng, Bayesian, ¢ linical,

imtn distinet dynamic regimes. A challenge posed by the intracraninl EEG

EE) data we stody is the fact that th e asd placement of eleetrod

g lorwrinmpe e aniraspet e i epl lepsy FEG data dyna mic...}

switching process that allows for (i) shared dyname regimes betwees o vari- ’ 4 ’

nble number of channeds, (§) asynchronous regime-switching, amd (i) an

unknown dictionary of dynamic regimes. 'We encode o sparse amd changing

et of dependencies between the ek dn wming o Morkov-switching Gnossian -
graphical mode] for the innovations proces driving the channel dynamios and
demonstrate the mportance of this model in paming and out-of-sample pre- I I I u I s e

dictioes of iIEEQ data. We show that cor moded prodoces imouitive state
nssignments thot can help automate climical analysis of seomres ond eneahle
the comparison of sub-clinical bursts and full clinical seizures.

Keywords: Bayminn noaparametric, EEC, factorial hidden Markov medel,
graphical moded, time series

_ = uhordered set of words with
Doy ot o e, e ol b v e o duplication of unique elements

what defines o seiware. This gnorance stems both from the complexity af
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e | A model for bag-of-words

Drausin F. Wulsin®, Emily B. Fox®, Brian Litt*®

*Department of Bioengineering, University of Pennsylvania, Philadelphia, PA representation

* Department of Neurology, University of Pmnmmmmm, };.4
= Department of Statiatics, [niversity of Washington, Seattle, WA

Abstract | As before, the "prior”
Pal.i_sms with epilepsy eanl mam'_fest. short, mb-dm.w.ul epile_pt.ic ‘_‘blu'sts"‘ in e L
addiion ol blown clinical szures, Wo bolive che luionstip boween |- yr g bility that doc | is

could yield important insights into the nature and intrinsie dynamies of ' "
soizures. A goal of our work is to parse these complex epileptic events from topl{: I'( IS:
into distinet dynamic regimes. A challenge posed by the intracranial EEG
(IEEG) data we study is the fact that the number and placement of electrodes
can vary between patients. We develop a Bayesian nonparametric Markow

switehing process that allows for (i) shared dynamie regimes between a vari- p Z,i' p— p— Wk
able mmmber of channels, (i) asynchronous regime-switching, and (iii) an

unknown dictionary of dynamie regimes. We encode a sparse and changing
g0t of dependencies botween the channels using a Markov-switching Ganssian
graphical model for the innovations process driving the channel dynamics and
demonstrate the importance of this model in parsing and out-of-sample pre-

dictions of iEEG data. We show that our model produces intuitive state Tr — [1_[1 1_[2 L 1T|_{]
assig::lmem.:_a that can ]:Le!p_aur.omat.e clinical an?l;sis DfEEIZIJIES and enable .
the comparizon of sub-clinical bursts and full clinical seizures. represents Corpus_wlde

Keywords:  Bayesian nonparametric, EEG, factorial hidden Markov model,
graphical model, time series

topic prevalence

1. Introduction

Dicapite over three decades of rescarch, we still have very little idea of
what defines a seizure. This ignoranee stems both from the complexity of
epilepsy as a disease and a paueity of quantitative tools that are fexible
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s | A model for bag-of-words

Drausin F. Wulsin®, Emily B. Fox®, Brian Litt*®

e representation

“ Department of Neurology, Univer o]" ivanio, Philadelphia, PA
<Department of Statistics, U y of Washi Seattle, WA

Abstract Assuming doc i is from

Patients with epilepsy can manifest short, sub-clinical epileptic “bursts” in
addigon to full- wn clinical seizures. We believe the relationship between 1
these tWwlgsses of oveags - wemetiing not previously studied quantitatively— toplc k: Words Occur

could ...-: :-.< g nature and intrinsie dynamies of .th b b.l.t.
seizures. wg,_goal of O ese complex epileptic events il
into distinct dvTmsa mgim. ‘. d by the intragranial EEG Wi pro aplities.
(iEEG) data we study ¥ : *h i cament Miloctrods

can vary between patients. ‘- ewglop a parametric larke

SCIENCE

switching process that allgys for (i) shard
able number of channels, (i) aSTTrehsg
unknown dictionary of dynamie regimes. DATE:
setofdepeudenembemeenﬂwdmnnelsmmgnhlnrkov e T k\\
graphical model for the innovations process driving the channel dynam c T
demonstrate the importance of this model in parsing apd g
dictions of iIEEG dftar=We SIOWTHAT our 11 h.mmw
assignments that can help automate clinical analysis of seizures Apg
the eomparison of sub-clinical bursts and full clinical seizurgse

Keywords: Bayesian nonparametric. EEG, factogiadei -5‘ kov model,
graphical model. time series

1. Introduction

Despite opeethree ch, we still have very little idea of
what deliffes a seizure*Thj orance stems both from the complexity of
opilepsy as a disease a paucity of quantitative tools that are flexible

Y
words in vocab
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Model for ,,bag-of-words”
oz

Topic-specific word probabilities

Distribution on words in vocab for each topic

SCIENCE TECH SPORTS

(table now organized by decreasing probabilities
showing top words in each category)
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Model for ,,bag-of-words”

Comparing and contrasting

Previously
Prior topic = k) =
probabilities Pz — Tk
Likelihood
under
each topic @

tf-iqdﬂ vector

compute likelihood of tf-idf
vector under each Gaussian

{modeling, complex, epilepsy,
modeling, Bayesian, clinical,

epilepsy, EEG, data, dynamic...}

compute likelihood of the
collection of words in doc
under each topic distribution
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Latent Dirichlet allocation

Modeling the Complex Dynamics and Changing . -
Correlations of Epileptic Events L D A I S a m Ixe d

Dirausin F. Wulsin®, Emily B. Fox®, Brian Litt*P

P —————————— I 0 ¢ =10 ¢] o =1 al[ e Mg g[oTo [<]!

t‘JEFep:l.i'l}r.lteﬂ'u. of Neurology, University of Pernsylvania, Philadelphia, PA
=lepartrnent of Statistice, University of Washington, Seaftle, WA

Abstract '
ﬁwit can manifest short, sub-clinical epileptic “bursts” in Wa n t to d | S C Ove r a
adidition to fullFhlown We believe the relationship betwoen
these two classes of events—something not previously stodied quantitatively _I: .
could vield important insights into the nature and intrinsic dvoamics of Set O to p I C S
A pgoal of our work is to parse these complex oVentE

into distinet dynamic regimes. A challenge posed by the intracrani

(IEEG) data we study is the fact that the number and placement of electro

CATl VATY llﬁmﬁ We develop a 0.6
switching process that alows for (i) shared IVIAIE reglmes DotWeerl & Verl-

able number of channels. (i) regime-switching, and (iii) an 0.4
unknown dictionary of dynamic regimes. W d changi '
sot of dependencies botween the channels using a) i ﬂ 0.2
ﬁmu{lﬂl for th”prms driving the ¢l I dynamics an .

MOTISLTA jmportance of tins model in parsing and out-of-sample pro- 0 o — —
dictions of data. We show that our roduces intuitive state ! ' I I I
assismments that can help i pizres ) C:yé"g\ (-:'L ™ E:b o‘"’\ . oé\

' N S
<G R % R e
A

1. Imtroduction é

Despite over throe deeades of research, we still have very little idea of
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Latent Dirichlet allocation

Topic vocab
distributions:

SCIENCE

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Dransin F. Wulsin®, Emily B. Fox®, Brian Litt>®

° Department of Bicengineering, University of Pennaylvania, Philadelphia, PA
* Department of Neurology, University of Pennsylvania, Philadelphia, PA
cDepartment of Statistics, University of Waskington, Seattls, WA

switbionilersy can manifest short, sub-clinical epileptic “bursts” in
i _"_""‘—-lm._... meisiges, e beliove the relationship between
e ; at previo®y studied quantitatively—
e iggrinsic dynamies of

gpileptic events
fttial EEG
aloatrodes

afc[M (0] asy onous regime-switching, and (iii) an
ofgry of dynije regimMss We encode a sparse and changing
e hotween thewhanmels using a Markov-switching Ganssian

thg innovations Wgoeess driving the channel dynamies and

\ nee of this mdel in parsing and out-of-sample pre-
dictions of {8 a. We show that ogmodel produces intuitive state
assignments Wt ca¥ help automate clinical analvsis of seigures and enable
the comparisoly 4 subéclinical bursts and full clinical seizures.

Keywords: Baykslan noparametric, EEG, factorial hidden Markov model,
graphical model, §the sorikg

1. Introduction \
Despite over throe
what defines a seizure. i

o arch, we still have very little idea of
igno stems both from the complexity of
epilepsy as a disease and a paucity™of quantitative tools that are flexible

Clustering:

One topic indicator
z, per document |

All words come from
(get scored under)
same topic z,

Distribution on
prevalence of
topics in corpus
M= [T, T, ... Ty
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Latent Dirichlet allocation

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Same topic Drausin F. Wulsin®, Emily B. Fox®, Brian Litt®

distributions: 2 Department of Bivengineering, University of Penmsylvania, Philsdelphia, PA

*Department of Neurology, University of Pennsylvania, Philadelphin, FA
=Department of Statiatics, University of Woaskington, Seattls, WA

SCIENCE

can manifest short, sub-elinieal epileptie “bursts” in
. We believe the relationship between

io classes of oventE==semipthing not previously studied quantitatively
important insights F|u peadu]_intrinsic dynamics of
of our work is to parse E-.'q events

3
1071 T0 TTeH=Enw

land changing
- W1 LTI
channel dynamics and
parsing wnd out-of-sample pre-
bl intuitive state
and enable
al bursts and

EEGC, factorial hiddel

ilel, time series

k&mﬂe decades of research, we still have very little idea of
This ignorance stems both from the complexity of
and a paneity of quantitative tools that are flexible

In LDA:

One topic indicator
z,,, per word in doc i

Each word gets
scored under its
topic z,,,

Distribution on
prevalence of
topics in document
T, = [TT; T, ... TT]
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Inference in LDA models
S

Modeling the Complex Dyvnamics and Changing
Correlations of Epileptic Events

Topic vocab Drausin . Wulsine, Emily B. Foxe, Brian Liteb Document topic
distributions: *Department of Rioengineering, University of Penmaylvania, Philsdeiphia, PA proportions:
* Department of Neurology, University of Pennsylvania, Philadelphia, PA
=Department of Siatistics, University of Washington, Seatdle, WA —
SCIENCE ; M = [Tril Mo ... 'I'l'”{]

Abstract 0.6 -

-
“in can manifest short, sub-elinieal epileptic “bursts” in e
ition to full-olown Wo beliove the relationship between 0.4 -
these two classes of events—something not previously studied quantitatively
/"

could vield important insights into the nature and intrinsic dynamices of 0.2 -
A pgoal of our work is to parse these complex CVDTILE *
ko distinet dynamic regimes. A challenge posed by the intracran

(IEEG) data we study is the fact that the number and placement of electro 0 | | : :
can vary between We develop a# N, ™
switching process that allows i) shar AIMIE rerimes betwoen & van- -\(_.- E}\'\Q .%\ , (_,d;\ W o\

able munber of channels, (i) regime-switching, and (iii) an
unknown dictionary of dynamic regimes. We encode d changi

set of dependencies between the channels using a -switchin \‘? ‘cs\ "S
ﬁmuﬂul for th roeess driving the el | dynamics an \o

monsirate the im of thz model in parsing and out-of-sample pre- 600
dictions of data. We show that our roduces intuitive state
assigmments that ean help is and enable

the comparison of sub-clinical bursts an

o [P 0. et s ]
ﬁm . time series

1. Introduction
Despite over three decades of rosearch, we still have vory little idea of

. nes & This ignoranee stems both from the complexity of
a8 a and a paucity of quantitative tools that are fexible
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Inference in LDA models

Topic vocab
distributions:

TOPIC1
Word 1 ?
Word 2
Word 3
Word 4
Word 5

g g

-~

TOPIC 2
Word 1
Word 2
Word 3
Word 4
Word 5

B

TOPIC 3
Wordl 7
Word 2
Word 3
Word 4
Word 5

R

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Drausin F. Wulsin®, Emily B. Fox®, Brian Litt>P

® Deportment of Bivengimeering, University of Pennayivania, Philadelphia, PA
*Department of Neurology, University of Pennsylvania, Philadelphia, PA
=[epartment of Statistics, University of Washington, Seattls, WA

Ahstract

Patients|with| epilepsy| can manifest short, sub-clinical epileptic “bursis” in
addition to full” @ We beliove the relationship between

these two classes of ovents—something not proviously studied quantitatively
could vield important insights into the nature and intrinsie dynamices of
A goal of our work is to parse these complex [epileptic] events
into distinet dynamic regimes. A challenge posed by the intracrand
(IEEG) data we study is the fact that the number and placement of electro

CATl VATY het.'n-'ec‘n We dcvclup:%hmpmﬂc“mﬁwl
switching process that allows for (i) shar A regimes betwoeen 4 var-
able number of channels, (ii]regimo—sm'ituhh‘kg: and (iii) an
unknown dictionary of dynamic regimes. We encode a[sparse]and changing
sot of dependencies botwoen the channels using a[Markof-=witching] Gaussian|
mudcl for pmems driving the channel dynamics and

monstrate the imports of this model in parsing and out-of-sample pre-
dictions of] iEﬁﬁI data. We show that our |model |11ruduzes intuitive state

assignments that ean help|antomate [elinical |analvsis of peigures| and enable
the eomparison of sub-clinical Tirsts an |clinical freiznred

Keywords: [Bayesian|nonparametrid EEG, factorial hidden[Markov]model]
sraphicall model, time series

1. Imtroduction

Despite over three decades of research, we still have very little idea of
what defines a smuml This ignorance stems both from the complexity of
ppilepsy] as a|disease(and a pancity of quantitative tools that are floxible

Document topic
proportions:

W, = [Ty TT, ... Tl
0.6
0.4
0.2
0 n n =
| P\' T T T T
"5?\0 ‘\L‘q/ ‘\04’ ‘\‘-"b(
A0 «DQ &O ,(\OQ
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Inference in LDA models
N

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

TOPiC Vocab Drausin F. Wulsin®, Emily B. Fox®, Brian Litts® Document topic
distributions: “Department of Bioenginsering, University of Permapivansa, Philadelphia, PA proportions:
O epartment of Satetics, Unesceityof Washnton, Seoe, Wi T = [TT, TT. .. T

TOPIC 1 [ i1 12 = VK
Werd 1 ?
Word 2
Word 3 ? -
Words 2 LDA inputs:
Weord 5 ?
. - Set of words per doc for each pa

doc in corpus ' /ﬁ_“ﬂ z

TOPIC 2 . = =
Werd 1 7 I T T T T
= ©
mama e LDA outputs: KO% (R (R R
Memale — Corpus-wide topic vocab

distributions

TOPIC 3 _ 1 I
L TORE Topic assignments per word
Word2 2 — Topic proportions per doc
Word 4 '-'
Word 5 ?

1. Imtroduction

. still have very little idea of
what defines o [seizure irnorance stems both from the complexity of
cpilepsy| as a[discase|and a paucity of quantitative tools that are flexible

-~ ——
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Interpreting LDA outputs

TOPIC 1 Modeling the Complex Dynamics and Changing 0.6 -
Correlations of Epileptic Events '
Drausin F. Walin®, Emily B. Fax®, Brian Litt*? 'D 4 i
= Dicpartraent of Bisenginerring, Ursversity of Permaylvonia, Phaladelphia, P :
* Depariment of Nearology, Unisersitg of Permsyisenia, Philadeiphia, PA
¢ Departmeret of Stattstics, University of Washington, Seattle, WA 0.2 i
Abstract 0 T T T T
TOPIC 2

\

<

ort, sub-clinical epileptic “bumts” in
We| e relationship between ‘Q
these two classes of evenis—somethng not prev ¢ studied quantitatively

coudld id d importont insights into the nature and intrimse dynamies of A, A\U ,-Q‘DQ /c\OQ
of our work s to these complex| events

nto distinet ynamic regimes. A posed by the intracran:

[iEEG) data we study i the fnct that the number and placement of slectrodes
mn vary hetwes
switching process e

ahl af chanpels, (i) regime-switching, i

unknown dictionary of dynamse regimes. Ve i
nidencies between the channels nsing ETE nﬂ
mnondel for Mmdﬁﬁq el dynarmics

madel in ing and out-of-sample pre-
dictions dnta. We show t jpruitive state
amignments can hel r=as af | and enable
the comparson of sub-cli

et [ . i e
fiat . tiane series

1. Introduction

tion to o

TOPIC 3

Dhespite cdlecnades of ressarch, we still have very little iden of
M nes This ignorance stems bhoth from the complexity of
- as al n paucity of quantitative tocls that are flexible
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Interpreting LDA outputs

TOPIC 1 Modeling the Complex Dynamics and Changing 0.6 P
Correlations of Epileptic Events s

Drausin F. Walsin®, Emily B. Foxt, Brian Littsh 0.4 V
N piventa, Pheadelphse, PA %

'Depv!m:m n[ Vnnlog Lnsm a)‘ kmq\‘nun, Phdaddphia, PA
of ¥ of Washington, Seatdle, WA 0 2 1¥4
0 T
TOPIC 2 e i gkt subclinical epillptic “bunts” in ) o v 5 &
———————— i Ve = ,;:;w,h,p },,,l:l“,, Q Q\O Q\(J Q\(J
L =t tatively
ant insights into Lhc natt PR «o «0 «O &O

of our woek in to
ot dynumic regimes. A

(iEEG} daf3 ?

o vary betweenSnaties

switchin

Examine coherence of
1 learned topics

- What are top words per topic?
- Do they form meaningful

groups?
- Use to post-facto label topics
@“ﬁa T e e etk o g g o (e.g., science, tech, sports,...)
as o d a paucity of quantitative tools that are flexible
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Interpreting LDA outputs

TOPIC 1 Modeling the Complex Dynamics and Changing 0.6 -
Correlations of Epileptic Events .
Dirunsin F. Walin®, Emily B. Fox®, Brinn Litts* 4
a[l of I ng, U iy of Phtladeivhes Pa 0-4
#Depertraent of Nesrology, [nmersuy of Permsyseni, Phdadalphia, P4
¢ Departmenat of Statsties, Unaversity of Washington, Seattle, Wa D 2 n
Abstract D T T T T
TOPIC 2 [t i o, il ciloptis “hnte” i AL
Tom to Il T We = relatiomship between o YN YN
theme two classes of events— something oot previously studied quantitazively OQ Q Q ‘Q
d impartant insights intn the notore and intrinsse dynamies of A, A\D «D A\O

conld v
of our work in to these complex events
into dstinet dynomic regimes. .ﬁ.ﬁ by the intracran:

(iEEG) danta we study is the foct that the number and hncmnnhn'fdnc = T
cnm vary betmee We develop
ot | DOC-Specific topic

proportions can be used to:
- Relate documents

TOPIC 3

the comparison of sub-clinae

%.— F EEG, fnctorinl biden [ Eaaal]
— - - Study user topic preferences

L. Introductim . .

Deipite docndes of rrcarch, we otill have very Bttle idew of | ASSIgH docs to rTILIltIple

nes This ignoranee stems both from the complexity of .
wu " d n pl‘l'p;.dl.}' of quantitative tools that are Hedble Categorles
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Interpreting LDA outputs

TOPIC 1 Modeling the Complex Dvnamics and Changing 0.6
Correlations of Epileptic Events -
Dirnusin F_ Walsin® Emil} B. Fax®, Brian Litt*F D 4
= Depantment of af ¥ Philadelphiz, P
Dq-.rlm.rm{ af '\'eu-nl-:w [.' niscrsily of Permasypisenia, Fhiladophia, P4
¢ Departmersl of Statistics, Unﬂmoj“uﬁm&mﬂg Wa D 2
Abstract 0

TOPIC 2 ot by cliiical epileptic “bursts” in

ool artant insights into the notore R ne
of owr work is o these compl
mtinct dynumic regimes. A 3

[lEEG} dnta we study is the foct that

onn vary betwee We rlr:-n:lup 3

switching proces:

ahl af chanmels, (i

unknown dictionnry of 4 T irmes:. ncods o
midencies between the chanpels nsing a
mndnl[m'

TOPIC 3

madd in
dictions o dnta. We show t
asmignments can hel
the comparison of sub-cline
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bt . tigme series

L. Imtroduction

Dempite clecdes of research, we still have very little iden of
- s This ignorance stems both from the complexity of
- P d n pancity of gquantitative tools that are flexible

Typically not interested
In word assignments
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An inference algorithm for LDA:

Gibbs sampling
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Clustering so far
20y

k-means EM for MoG
Assign observations to E-step: estimate cluster
closest cluster center responsibilities
2 < argmin || — x| [3 foo= ;jkN(IEi ﬁk,Zk)A
! ijl miN(z; | fiz,%;5)

Revise cluster centers M-step: maximize likelihood
[l 4— a,rgmin Z e — xq|5 over parameters

1124 =] They ey 2k | {Tikes Ti }

Iterative hard assignment lterative soft assignment

to max objective to max objective
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What can we do for our bag-of-words models?

Part 1: Clustering model

SCIENCE

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Diransin F. Walsin®, Emily B, Fox®, Brian Litts®

& [epartment of yof , Phiindelpkia, P4
Wdﬂmm fmm.ﬁt
D of 1 Y of Washington, Seatcle, Wit

Ahstract

Patsents with epilepsy con manifest short, subeclimeal eplepte “bursts™ in
ackdition to full blown clincal seizares. We belisve the relationship betwesn
these two clusses of events —something not previcusly studied quantitatively—
muﬂpnulwhnimqhhmbnthenahmandmdymo\f
seizures. A goal of our work s to parse these complex epilepbic events
mtc distinct dynamec regmes. A challenge posed by the mirscramal EEG
ﬁEEG]d:hw:shﬂynthe&tthaitbﬂmbﬂandplmmtof*dmdﬂ
can vary | W dy w Markow
mt:l:mgpmth‘:ﬂmlnr[]lhalﬂldymmrwbﬂw:mam

graphical medel for the moovations process droving the channe] dynamses and
demonstrate the mportance of the model in paming and out-of sampls pre-
dictaons of IEEG data. “’enhmrthatmmﬂddpmdmnimm
mmmignments that can help te climical analysis of sex and enable
the comparson of sub-climical bursts and full clmical seares.

Kegwords: Bayesan nonparametne, EEG, fdonal hidden Markov model,
praphical model, time senes

1. Introduction

Dempate over three decades of research, we still have very Little idea of
what defines a seizure. This ignorance stems both from the complety of
epilepay as o disease and 2 paucity of quantitative tools that are flexible

One topic indicator
z, per document |

All words come from
(get scored under)
same topic z,

Distribution on
prevalence of
topics in corpus
™ = [T, TT, ... TTY]
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What can we do for our bag-of-words models?

Part 1: Clustering model

SCIENCE

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Dransin F. Wulsin®, Emily B, Fox®, Brian Littsh

o p of F , Phuladelplsta, Fa
qulmqfﬂmbghm fmmwfl
it Smtle, WA

Abstract
Patients with epilepsy can manifest short, sub-clinical spileptac “bursts”™ in
acldition to full blown clinical seiures. We belimm the relationship between
these two classes of events —something not previcusly studied quantitatively —
mldp:ﬂlmp-uﬂ:utmllghhmﬂmnatm:ndmdymnf
seieures. A goal of cur work s to parse these complex epileptic events
mto distinct dynamsc regimes. A& challenge posed by the imtracranial EEG
ﬁmﬂ-]dﬂndﬂynth&lhttbemmbﬂ'mdp]mmtﬂ*dmdu
switching process that allows for (1) hal\edd;rnﬂm:m@mﬂhhruam
ahle nmumber of channels, (1) asynchronoos regimeswitching, and () an

unknown dictaonary fdj'nﬂlmrmgmm. We encode a spame and changing
set of dependencies between the channels using 2 Markov-switching Gansszn
graphical medel for the mnovations process droang the channe] dynamecs and
demnonstrate the mportance of thes model in paming and out-of sample pre-
dictions of 1IEEG data. We show that our model produces minitive state
asmignments that can help te clinical analysis of sex amd enable
Keywords:  Bayesz i, EEG, Bictorial hidden Markor moded,
graphical model, time seres

1. Imtroduction

Dempite over three decades of research, we still hove very Litle idea of
what defines a seivure. This ignorance stems both from the complexty of
enllensy s a disese and o ravcte of ouantitative tools that are fexcble

Can derive
EM algorithm:

- Gaussian likelihood of
tf-idf vector

}

multinomial likelihood
of word counts
(m,, successes of word w)

- Result: mixture of
multinomial model
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What can we do for our bag-of-words models?

Part 2: LDA model

TOPIC 1

TOPIC 2

TOPIC 3

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Drausin F. Wlsn®, Emily B. Fox®, Brian Litt*®

@ [lepaenirment ing, [f ¥
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¢ Departmeral of Siatistics, University of Washinglon, Sealile, WA

Abstract
i i ort, sub-clinical epileptic “bursts” in

Bon to f T we%e relutinpship between
thise twao classes of events—some Dot prevl ¢ studied quantitatively
could vield importont insights into the nature and intriesic d ies of
ﬁ of omr work is to these complex| events
into distinet dynamic regimes, A poaed by the intracr
[iEEG) data we study is the foct that the number and placement of slectrodes
mn vary betwes We develop

Rt e, (3

regimes. Ve
ndencies between the chanpels using

K -
model,

L Intreduction

Dhespite cdleruden of rescarch, we still have very Little ide of
nes This ignorance stems both from the complexity of

06
04
02
.

0 T T T
2
Q“{' Q\c.eq’ -\c:b Q\ob‘
£0% «0O &DQ A0

Can derive
EM algorithm,

but not common
(performs poorly)

n paucity of quantitative tools that are Bexible
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An inference algorithms
I T

Typical LDA implementations

Normally LDA Is specified as a Bayesian model
(otherwise, “probabilistic latent semantic analysis/indexing”)

- Account for uncertainty in parameters
when making predictions

— Naturally regularizes parameter estimates
in contrast to MLE

EM-like algorithms (e.qg., “variational EM"), or...
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Algorithm for Bayesian inference
I

Gibbs sampling

lterative random hard assignment!

Benefits:
« Typically intuitive updates

« Very straightforward to implement
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Gibbs sampling for LDA

TOPIC 1

TOPIC 2

TOPIC 3

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Drausin F. Walsiz®*, Emily B. Fox®, Brian Littsh

@ Lep af of , Phaladeiphss, P4
'Drpmm af ! ':}-ukm' Unhu-ﬂqq,f?-rnqhnh. Ewu'pih. Pa

Diezpar

Abstract

F‘I' i ort, sub-clinical epileptic “bursts” in
Hon to f 0 m%e relatinoship between
ﬂ:memdmdcm HOTEI Dok previ :tudl:dmuntmnd)

coald nnt imsights into the nnture and intrfimsic d of
ﬁ[nmwlum these complex events
imto distinet dynimic regimes. A posed by the intracr

[iEEG) data we study is the fact that the number and placement of elec
RO Vary Tetwee
switching process
ahl of chanpels, (ii)
unkenown dictionnry U[d_'fn.lm.l! Teimes.

ndmeies between the channels nsing

m.ntlnl[m mﬂnnng

madel in

dictions dota. We show +
amignments e and ennble
the comparson of sl

i : F EEG, factorial biddes [Eegimal]
m , timne series

1. Intreduction

ite demdes of ressarch, we still have little iden of
very

nes This ignorance stems both from the complexity of

s o o pancity of quantitative tocls thot are Hexible

06 1
04
02 {7
0 .

(g{‘ o \c:b \ob‘

N
A0 «UQ ,Q‘DQ ,(\OQ

Current set of
assignments
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Gibbs sampling for LDA
246

TOPRIC 1 Modeling the Complex Dynamics and Changing

Correlations of Epileptic Events 0.6 -
Druusin F. Wislsiz®, Emily B. Fox®, Brian Liteok 0.4 4
3 [leperiraeni of Biomnginerring, Ursversiy of Peesplvania, Phindelphis P4
*Deperirnent of Newrology, Unisersity of Permsyinenio, Phidadelphia, P4
© Departmerst of Stattstics, University of Washingion, Seatele, WA 0.2 i
Abstract |6

TOPIC 2

= plinica] we — } mmhi;:hetmn
thmmduﬂsnl'nm e
conld yield u:npud. into the nnture and intriesic dyna ol m

doc
-y

8
i
1K
_g.
%

detinet ].'unlmn: regimes, A pnnnd'b) the infracrasfgl

(iEEC} data we stady is umlmum indier and placemet of Nl
mn vary Betmnﬁ We develop nlm flarks r
switching process s for (i 1hnmddmmc:|:glmz‘|l:etwn:nlmn— ‘.-z
ahl.l:ﬁuf chanpels, (i) | regime-switching, and (i) an

mknowe thrtionnry of dynax s T, chncade . =2 f'EEG"_--:s"
e Step 1: Randomly W ?11..,? 12iumy,

set of dependencies between the ch 11 1asingg i
TOPIC 3 iy g Sl | pegssign all z,, based on
dictions o dota. We show that sor [medel |prodeces intuitive state . *

gt mhﬂ%mmg“ﬂm - doc topic proportions ?,,,;,-.inj

the comparson of sub-clinse

gz | Corsiedbomparmnns] £2C, fuia bl [nlfacde] - topic vocab distributions Ziw=12

L Intrduction Draw randomly from
b B o Ten e s o e i o responsibility vector

as ool and 0 pancity of quantitative tools thot are fHeihble
[ Mo oo Fiidd
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Gibbs sampling for LDA

TOPIC 1

TOPRIC 2

TOPIC 3

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Dirausin F. Walsiz®, Emily B. Fox=®, Brinn Litts®

= [hepartrent of g, of F Philadelphis, PA
Depuimnf\‘c-nﬂw Unhu-nw-q,r Pernsyinenin, Philadciphia, PA
¢ Departmeral of Stadistics, University of Washirgion, Sealtle, WA

kl:ul.rnl:t

bcm
mmdmd'cm SO nnl.;pcr\cn

conald artant insights into the noture .lnrl intrinsic o
of our work is to these complex|
it distinet dymomic regimes. & posed by the intracr

[iIEEG) data we stud utl:e[ncl.dmt nuinhier and placement of lec
n vary betwee

switching process s
“blefiualaler dhasecl, ()
unknown dictionary of d_'rn.lmlc regimes. Ve
nidencies between the channels nsing

rocess drivi
madel in img o ullt.-uf—umph pre-
dota. We show ¢ qitive state
amignments can yas ol and enable
the comparison of sl

ﬁ F BEG, factorial bidden [EEERJRRIE]

L. Introduction

dictions o

[hespite deondes of research, we still haove very bittle iden of
s This ignorance stems both from the complexity of
e n pancity of quantitative tools thot are flexible

0.6 -
04
HES 5
0 ,; T ;’ T 4) T ‘;l
«D «D «D ,-(\0

Step 2: Randomly
reassign doc topic
proportions based on
assignments z;,, in
current doc
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Gibbs sampling for LDA

TORIC 1 Modeling the Complex Dynamics and Changing 0.6 7
Correlations of Epileptic Events '
Drusin F. Walbiz®, Ermily B. Foxt, Brian Litesh 0.4 1
Dipartment of ocnginccring, Urdverstty of Presusylvansa, Phdndelphis, P4 :
SDepariment of Newrology, University of Perrsyisania, Phidadclpbia, P4
© Departmerst of Statistics, Undversity of Washinglon, Sealtle, WA 0.2 1
i | [ |

Ahbstract ﬂ T T T T
i 7 ort., sub-clinical epileptic “bumts” in . C:» fl‘ % &
e o o We e relationsbip between Q\ "Q\C-' Y &
these twa classes of events— some BO& prevl p studied quantitatively
could yield important insights into the nnture apd intrimsic dymamics of A0 £0 «OQ ,(\OQ
#ﬂ of our work is o these complex| pvents
into distinet dynomic regimes. A poeed by the intraer
[im}]dnhn:mﬂ in the fnct that number and placement. of elee s

TOPIC 2

Step 3: Repeat for all docs

TOPIC 3

asmignments
the comparson of sub-cli

o ] . <ot o - N
model, time series

L. Intreduction

Dhempite clerndes of ressarch, we still have very little iden of
nes This ignorance stems both from the complexity of
ns o n pancity of quantitative tocds thot are flexible
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Gibbs sampling for LDA

TOPIC1 Modeling the Complex Dynamics and Changing 0.6 7
Word 1 ? Correlations of Epileptic Events .
Word 2 ? . o ; ) . /
Word T 2 Drausin F. Wulin®, Emily B. Fox®, Brian Litt*5 0-4 -
N ap of s ng, Uratversity of Phaladelphss, P4
Word 4 ? s Departmeni of Nenrology, Unsersity af Bermsylsnin, Pdadeiphio, Fi
Word 5 7 ¢ Departmeral of Statistics, University of Washirgion, Scaltle, WA 0 2 _/
Abstract 0 T T T T
TOPIC 2 i i ort, subclinieal epileptic “burts” in i C:\' ’], 49 B
on to T EEes We ¢ relaticmskip betwees ! AN VRN &)
Word 1 z theme two classes of events— sometiing not previously studied quantitatively DQ 'Q Q Q
Word2 7 could yield important, insights into the noture and intrinsic dynamios of A, «D ,(\D ,(\D
Word T 2 #ﬂ of our work i to these pomplec pvents
into distinet dynomic regimes. A posed by the intracran
Word 4 ? (iEEG) dnta we study is the fact that the number and placement of electrodes
Word5 7 o ey betwee
switching process B
ahl af chanmels, (i regime-switching, -
ks iy o st e ﬁa = | Step 4: Randomly
ndencies between the channels nsing -mwrtchi
mondel for rocess driving the nel dymamics an M .
TOPIC 3 - SOOI | reassign topic vocab
Word 1 7 dictions o nlnuhd“": show t : j ujri;: state . ) :
i ot = s o an
weraz 2 o e of wh b =* | distributions based on
: K ] EEG, fnctorial hiﬂdr:n_ . .
Word 2 S ol assignments z;,, in
e entire corpus
Dempite demmdes of research, we still have very hittle idem of
mes This ignoranee stems both from the complexity of
wm n d n pancity of quantitative tools that are flexible
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An inference algorithm: Gibbs sampling

Gibbs sampling for LDA

TOPIC1

TCPIC 2

TOPIC 3

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Druusin F. Wikin®, Emily B. Fox®, Brian Litts®
e of Bssenganessing, Uraversty o Peransylvora, Phladelphss, P
A Deperimieni of Nenrology, Unisersify o 1
¢ Departmerst of Stattstics, Unsversiy of Washington, Seattle, Wi

Abstrarct

ort., sub-clinical epileptic “bumsta” in
We e relatioship between

tion to f 0
theme two classes of events—somethmg oot previously studied quantitatively
could vield important insights into the noture and intrinsic d Gos of
#‘] of our work i to these complex] events
into distinet dyoamic regimes. A posed by the intracram
(iEEG) dota we study is the fact that the number and placement of electrodes
oo vary betwes We develap

ymarmc regames between o var-

mwitching process ows
ahlnﬁaf channels, (i) regime-switching. and (i) an
unknown dictionnry of dynamse regimes. Ve i
ndencies between the channels wsing _witchi
mode] for Mmdﬁﬁnﬁ el dymamies an

madel in parsing and ot-of-smple pre-

dirtions o dnta. We show fpuitive state
amignments can hel rms of and enable
the comparson of mb-cline

[ : F EEG, factorial idden [l
1 . timne series

L. Introduction
Dhempite

clemides of ressarch, we still have very Little iden of
This igmorance stems both from the complexity of
d o paurity of quantitative tools thar are flexible

0.6

0.4 -

0.2

Repeat Steps 1-4 until
max iter reached
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An inference algorithm: Gibbs sampling

Random sample #10000

TOPIC 1

TOPIC 2

TOPIC 3

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Drausin F. Walsin®, Emily B. Fox®, Brian Litt*?

a[Jepantmen of ering, [ of Philadelphis, PA
A Depemiraeni of Newrology, Unisersity of Pernsyinenin, Phdaddphia, P4
¢ Departmersd of Statistics, [niversity of Washirgtor, Seattle, WA

Abstract

F' ort, subclinical epileptic “bursts™ in
tion to W e relatinship between

=
thise two classes of events—something oot previously studied quant ftatively

could wield important insights into the noture apd iotriosic d of
of o work is to these complex ewents
o distinet dynumic regimes. & posed by the intracran

[iEEG) dnta we study is the foce that the number nnd placement of electrades
o vary betwne We develap

switching process s FIAIIE TEEIMes Detwsen i var-

ah af chanpels, (i) regime-switching, and (ii] an

unknowm dictionnry of dynamse regimes. Ve i
midencies between the channels using _HwTt nﬂ
moide] for Mmdﬁﬁnﬁ;t : mel dymamics am

madel in parsing and out-of sample pre-
dictions o dota. We show ¢

amignments can hel s af
the comparison of sub-clinie

P R o
m |, timme series

1. Introduction
Dhempite

fpeuitive state
and ennble

demdes of ressarch, we still have very Little iden of
This ignorance stems both from the complexity of
d n paucity of quantitative tools that are flexible

0.6
04
0.2
0 T T T I
My P
{3\0 é\oq’ Q\o’b Q\o
A0 AO% «OF <O

Current set of
assighments
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An inference algorithm: Gibbs sampling

Random sample #10001

TOPIC 1

TOPIC 2

TOPIC 3

Modeling the Complex Dyvnamics and Changing
Correlations of Epileptic Events

Dirausin F. Walsin®, Emily B. Fox®, Brian Littsb
= [ af g, [ af Phuladelphes, Pa
S Depertruent off Newrology, Unsersty of Perrsyisemn, Phiadelphia, Pa
¢ Departmersl of Siatistics, niversity of Washinglon, Sealile, WA
Abstract

F.- ; crt, subeclinieal epileptic “hurmts” in
tion tao o W e relationship between

these two closses of pvents—something not previously stodied quantitatively

conld vield important insights into the ooture and intricsic d of
of owr work is to these complex| Events
into distinet dynamic regimes. A posed by the intracran

[iEEG) data we study is the fnee that numbier and placement of =lec =
o vary betwee
switching process s
ahl of chanpels, (i)
unkoown dictionnry of dynamse regimes.
nidencies between the channels wsing
model for rocess driving the mel dymarmics an

i madel in sing o out-of-sample pre-
dota. We show t jpsuitive state
amignments can hel yas ol and enahble
the won of subocli

- R
m | tiame series

L. Introdoction

Dhempite decnides of research, we still have wery little iden of

ms This ignorance stems both from the complexity of
P d o paucity of quantitative tools that are flexible

0.6 -
04
02
0 T T T T
Ny 1 4 B
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,.(‘D ;\D ,4'\0

Current set of
assighments
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An inference algorithm: Gibbs sampling

Random sample #10002

TOPIC 1

TOPIC 2

TOPIC 3

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Dirausin F. Walkin®, Emily B. Fox®, Brian Litt~F
2 af g, [ of Phsadeiphis, Pa
*unﬂmcn{ afl \'urnbg Unﬂm af Perrasyisenin, Fhdadelphia, Pa
¢ Departmerst of Stastseies, Dnsversity of' Washimgton, Seatole, Wa

.il:ul.rm:t

nrt., suboclimizal epileptic “bursts”™ in
= Idntmml:lp ketween

bcm
thmet-udmnl’nmn sSomELning not previously stodied qu.nmn.n.l.u.u'l}

conald artant insights into lh-: notwure amd iotrinsic d of
of o work s these complex pvents
ptinet dynumic regimes. A pr.uarl ]:\]. the i TCTIL

[|EEG]- dnta we study is the fnct that nuinheer and placement of slec

o vary betwee We develop
switching process oS i DA TEEIMes Detwssn o var-
hﬁuf chanme=ls, [ii)| regime-switching. and (i) an
unknown dictionnry of dj'n.nmlc regimes. Ve i
midencies bebween the chanmels msing —awrtchi
mn-dnlfm rocess driving the nel dynamics an

madel in parsing wod out-of-sample pre-
dictions o dota. ‘W show fpeuitive state
aemignments can hel rmas af and ennble
the comparison of sub-cline

oyt ] . el e Tl
m . tirme series

1L Imtroduoction
Dempite demmades of research, we still have very little iden of

s This ignoranee stems both from the complexity of
s d n pancity of quantitative tocls that are flexible

0.6
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02
0 . . . .

Current set of
assighments

20/11,27/11 2024




An inference algorithm: Gibbs sampling

What do we know about this process?

Not an optimization algorithm

A

_ Eventually

{D_B-\. .

3= provides

EE ‘correct”

€0 .

oa Bayeman
estimates...

P
/ iterations

probability of observations given variables/parameters
and probability of variables/parameters themselves
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An inference algorithm: Gibbs sampling

sy
What to do with sampling output?

Predictions:

1. Make prediction for each snapshot of randomly
assigned variables/parameters (full iteration)

2. Average predictions for final result

>

Parameter or assignment estimate:

- Look at snapshot of randomly assigned
variables/parameters that maximizes
Jjoint model probability”

Joint model
probability

iterations
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Gibbs sampling algorithm

lterative random hard assignment!

Assignment variables and model parameters
treated similarly

lteratively draw variable/parameter from
conditional distribution having fixed:

— all other variables/parameters

* values randomly selected in previous rounds
* changes from iter to iter

- observations
+ always the same values
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,Collapsed” Gibbs sampling for LDA

Based on special structure of LDA model, can
sample just indicator variables z, ,

- No need to sample other parameters

* corpus-wide topic vocab distributions
* per-doc topic proportions

Often leads to much better performance
because examining uncertainty in smaller space

20/11,27/11 2024



Collapsed Gibbs sampling for LDA
L

Never draw topic vocab
distributions or doc topic
proportions

Randomly reassign z;,
based on current
assignments Z, of all

[ A

2 v i

Heymromis: F EEG, fctorial hidden [Eial]
ﬁm |, tizme series

other words in document
1. Intreduction and corpus
Dempite d.mn.rlm of ressarch, we still have very Lttle |.d.m af
(= R T e <o e i
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Collapsed Gibbs sampling for LDA
= 00

Select a document

epilepsy |dynamic|Bayesian| EEG model

o WOrL bb“”mt
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Collapsed Gibbs sampling for LDA
20 I

Randomly assign topics

3 2 1 3 1
epilepsy |dynamic|Bayesian| EEG model

0o
(one posiiDe 47 -
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Collapsed Gibbs sampling for LDA

Randomly assign topics

test

mode

3 2 1 3 1
epilepsy |dynamic|Bayesian| EEG model
Repeat for
each doc in
' T—_  the corpus

validate

likelihood
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Collapsed Gibbs sampling for LDA

Maintain local statistics

3 2 1 3 1
epilepsy |[dynamic|Bayesian| EEG model
Topic 1| Topic 2| Topic 3
Doci 2. ] 2
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Collapsed Gibbs sampling for LDA

Maintain global statistics

3 2 1 3 1
epilepsy |dynamic |Bayesian| EEG model
Topic 1| Topic 2| Topic 3
Topic 1l | Topic 2 | Topic 3 Doc | 2 1 2
epilepsy 1 0 35
Bayesian 50 0 1
Total
del 42 1 0
oo 1ghhh“‘ counts
— 0 0 20 from all
dynamic 10 8 1 docs
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Collapsed Gibbs sampling for LDA

Randomly reassign topics

3 4 1 3 1
epilepsy |dynamic |Bayesian| EEG model
Topic 1| Topic 2| Topic 3
Topic 1 | Topic 2 | Topic 3 Doc i 2| O/ 2
epilepsy 1 0 35
Bayesian 50 0 1
model 42 1 0 dﬂcﬁi“;nﬁ
EEE 0 0 20 oy f"“asﬁﬂnmd\i"
(dynam 10 7/5 1 cuf f-,J_;,LuJ':'z'
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Collapsed Gibbs sampling for LDA

_ 265 |
Probability of new assignment
3 ? 1 3 1
epilepsy |dynamic[Bayesian| EEG model
Topicl Topic 2 Topic 3
| = ]
—>
How much doc “likes” Topic 1| Topic 2 | Topic 3
each topic based on other Doc i > 0 2
assignments in doc
# current assignments 5 9.0 + v rofl
to topic k in doc i ! —~ smoothing param fom Bayes P
63 # words in doc i ~Ns = 1 j__fg,ﬁ, curent” word
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Collapsed Gibbs sampling for LDA

Probability of new assignment

3 ? 1 3 1
epilepsy | dynamic Bayesian| EEG model
- : : How much each topic
Topic 1 Topic 2 Topic 3 likes the word "dynamic”
o= = based on assignments in
< other docs in corpus

« Topic 1|Topic 2|Topic 3
dynamic 10 / 1

# assignments

corpus-wide of === 1104y namic,k 1T 7/ «— smoothing param from Bayes prior

word “dynamic”

Sonek ™™ Ty Mok Iy & o

A
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Collapsed Gibbs sampling for LDA

Probability of new assignment

3 ? 1

epilepsy ' dynamic|Bayesian| EEG

Topic 1 Topic 2

3 1
model
Topic 3
o
Topic 1| Topic 2| Topic 3
10 7 1

Topic 2 also really likes "dynamic”,
but in a different context...
e.g., a topic on fluid dynamics
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Collapsed Gibbs sampling for LDA
2

Probability of new assignment

3 ? 1 3 1
epilepsy |dynamic|Bayesian| EEG model

Topic 1 Topic 2 Topic 3

How much Nik + Q& Mdynamic,k T 7  How much
doc likes topic N, — 1 + Ka S ey Muw ik + V7 topic likes word
w 1
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Collapsed Gibbs sampling for LDA
_ 269 |

Randomly draw a new topic indicator

3 ? 1 3 1
epilepsy | dynamic |Bayesian| EEG model

Topic 1 Topic 2 Topic 3

e —
To draw new topic assignment (equivalently):
- roll K-sided die with these probabilities
- throw dart at these regions / Normalize this product of

terms over K possible topics!

How much Nik T O Mdynamic,k T 7 | How much
doc likes topic N — 14+ Ko Z—wev Mk + Vv topic likes word
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Collapsed Gibbs sampling for LDA

Update counts

35 | (1) 1 3 1

epilepsy | dynamic Bayesian| EEG model

Topic 1| Topic 2| Topic 3

Topic 1 | Topic 2 | Topic 3| [Doci| 3 /7 0 2
epilepsy 1 0 35
Bayesian 50 0 ‘neament counts
model 42 1 0 lased on nzu;
- mm‘t
FEG 0 0 20 an
_ — , Ziw=
(dynamic) | 0] 7 1
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Collapsed Gibbs sampling for LDA

s

Geometrically...

3 1 1 3 1
epilepsy |dynamic|Bayesian| EEG model
Topic 1 Topic 2 Topic 3

p——

~

Increase popularity of
"dynamic” in topic 1

(corpus-wide)

Increase popularity of
topic lindoc i
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Collapsed Gibbs sampling for LDA

lterate through all words/docs

3 1 1 3 1
epilepsy | dynamic|Bayesian| EEG model

Topic 1| Topic 2| Topic 3

Topic1 | Topic 2 | Topic 3 Doc i 2 0 2
epilepsy 1 0 35
Bayesian 50 0 1
model 42 1 0
EEG 0 0 20
dynamic 10 7/ 1
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Collapsed Gibbs sampling for LDA

What to do with the collapsed samples?

TOPIC1

TOPIC 2

TOPIC 3

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Drausin F. Wulsin®, Emily B. Fox®, Brian Litt~b

¢ af Pioengineering, Universty of Pennsplvania, Phalodelphia, P'A
EDepariment of Neurology, Untversity of Pennspivanss, Phaladelphia, FA
“Departront of Statisites, Unersity of Washmgton, Seatele, WA

Abstract

mt lepilepsy) can manifest short, sub-clinical epileptic “bursts” in
b=t ol W relatiomship between
tbnmmeL:nmuEmm s—something not previously studied quantitatively

jeld important ineiphts into the nature and intringsic dynamics of
of our work is to these complex
{|EEGJd.nt:Lwest

i.cmr,:iruea A posed by the i

We d.evelnp

amtch ]
mﬁmdmmdx (i) regime-5wi e
unknown dictionary of dynamic rezimes. E;i! ﬁmﬁ
st of dencies between the channeks using

midial for m;lrmdmmgt nel dynamics
jmpo parsi
dirtions of 0

data. We show that gyl
azipnments that can halp

the comparisen of sub-clincal ©

K m_ EEG, factorial hidden
, time series

1. Introduction

Despita over thres decades of research, we still have very little idea of

nes This ignoranee stems both from the complexity of
HERE and a pancity of quantitative tools that are fexible

From "best” sample of {z,},
can infer:

1. Topics from conditional
distribution...

need corpus-wide info
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Collapsed Gibbs sampling for LDA
What to do with the collapsed samples?

Medeling the Complex Dynamics and Changing 06 -
Correlations of Epileptic Events .

Drunsin F. Walsiz®, Emily B. Fox=, Brinn ittt 0.4 4

@ [eparimeni of Mompmerring, Uraversity of Peransplvania, Philadelphis, P4
*Deparirent of Newrolegy, Universily of Permasyinenin, Phiaddphia, PA

¢ Deparimenst of Siatistics, Undversity of Washingtor, Scaltle, WA 0.2 i
0 | | T T
ghort, sub-clinical epileptic “bummts” in ) c:\’ ’L Ib' b‘

all-Dlow & [l - Wel e relationship between o * K K
theme two classes of events— something oot previously st rllndqluntltm.\'d DQ Q Q ‘Q
could vield artant insights into the nature and intrimsic d of “\ «D .‘\D «o
é A% of our work in to these complex| events
into distinet Oynomic regimes. .'l poeed by the intracran:

[iEEG) rlmn tudy is the [m:n]: it the number and placement of slec

From "best” sample of {z,,}.
can infer:
1. Topics from conditional

mEm PR distribution...
K eyrsomds EEG[nc.mn]hnﬂr]m_ . .
ﬁ me need corpus-wide info

1 Tntroduction _ - 2. Document "embedding”...
Desspite: doendes of rescarch, we sill have veey littl iden of )
b=, g T e e bt o b ol need doc info only
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Collapsed Gibbs sampling for LDA

Embedding new documents

TOPIC 1

TOPIC 2

TOPIC 3

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Drausin F. Walsiz®*, Emily B. Fox®, Brinn Litt*®
'qu'i off Bioemginerring, Ursversity off Perasylvonia, ﬁn’:#ﬂl.l'}".d
Dcp!lmcn{n;’\'mbg-[. ersily of Permspinenin, Mhiladdphion,
¢ Departmersl of Siatistics, [niversity of Washington, Sealile, “".»I

the comparion of Emh—d.mlc brs
Fm oy . |
timme series

L. Imtroduction

Dhempite el of ressarch, we still have very little iden of
This ignorance stems both from the complexity of

o
o
I\\

Simple approach:

1. Fix topics based on
training set collapsed
sampling

2. Run uncollapsed
sampler on
new doc(s) only

s
ﬂu | d o paucity of quantitative tools that are fledble
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What you can do now

+ Compare and contrast clustering and mixed
membership models

+ Describe a document clustering model for the bag-
of-words doc representation

* |Interpret the components of the LDA mixed
membership model

* Analyze a learned LDA model
- Topics in the corpus
- Topics per document

+ Describe Gibbs sampling steps at a high level

« Utilize Gibbs sampling output to form predictions or
estimate model parameters

* Implement collapsed Gibbs sampling for LDA

20/11,27/11 2024



Hierarchical clustering
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Why hierarchical clustering

* Avoid choosing # clusters beforehand

« Dendrograms help visualize
different clustering granularities
- No need to rerun algorithm [rl rlﬁn

« Most algorithms allow user to choose
any distance metric

— k-means restricted us to Euclidean distance
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Why hierarchical clustering

Can often find more complex
shapes than k-means or
Gaussian mixture models

Gaussian mixtures:

ellipsoids
k-means: spherical

clusters

e
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Why hierarchical clustering
a0

Can often find more complex
shapes than k-means or
Gaussian mixture models

What about these?

'y
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Two main types of algorithms
e

Divisive, a.k.a top-down: Start with all data in
one big cluster and recursively split.

- Example: recursive k-means

Agglomerative a.k.a. bottom-up: Start with
each data point as its own cluster. Merge
clusters until all points are in one big cluster.

- Example: single linkage
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Divisive clustering
ET

Divisive In pictures — level 1
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Divisive clustering
s

Divisive in pictures — level 2
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Divisive: Recursive k-means

284 |
Wlklpedla\
Non-athletes

Athletes

E——
E—
=
=
== ==
=
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Divisive: Recursive k-means

285 |
- /Wlklpema\ﬂ '
thletes on-athletes
~ \
Baseball Soccer/  Musicians, Scholars, politicians,
Em— Ice hockey artists, actors ~ government officials
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Divisive: choices to be made
3

» Which algorithm to recurse
* How many clusters per split
« When to split vs. stop

— Max cluster size:
number of points in cluster falls below threshold

— Max cluster radius:
distance to furthest point falls below threshold

— Specified # clusters:
split until pre-specified # clusters is reached
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Aglomerative: Single linkage

v3:74

1. Initialize each point to be its own cluster

D ©

®
O,
®

®
®
®
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Aglomerative: Single linkage

288

2. Define distance between clusters to be:

@@ @ distance(C,,C,) =
® ©® .,
®

@ specified pairwise
distance function

®

Linkage criteria
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Aglomerative: Single linkage
o

3. Merge the two closest clusters

20/11,27/11 2024



Aglomerative: Single linkage
o

4. Repeat step 3 until all points are in one cluster

PR
)
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Aglomerative: Single linkage
T

4. Repeat step 3 until all points are in one cluster
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Cluster of clusters
Sz

Just like our picture for divisive clustering...
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The dendrogram

* X axis shows data points (carefully ordered)
* y-axis shows distance between pair of clusters

Height here indicates
min distance between
blue pts and green pts
(2 clusters)

Cluster
distance

Data points

20/11,27/11 2024



Extracting a partition
e

Choose a distance D* at which to cut dendogram

Every branch that crosses D* becomes a separate cluster

*

D
Cluster "'rrrh""""'

distance

Data points
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Agglomerative: choices to be made
T

» Distance metric: d(x; x)

» Linkage function: e.g., mirg: d(x, x)
X;in C,,
X; in C,

* Where and how to cut dendrogram

DA, - a== b o o S
Cluster _
distance =

| ---l

Data points
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More on cutting dendrogram

* For visualization, smaller # clusters is preferable

* For tasks like outlier detection, cut based on:

- Distance threshold (i)
- Inconsistency coefficient

» Compare height of merge to average merge heights below

subsets that are relatively far apart compared to the
members of each subset internally

» Still have to choose a threshold to cut at, but now in terms
of “inconsistency” rather than distance

* No cutting method is “incorrect’, some are just
more useful than others
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Computational considerations

» Computing all pairs of distances is expensive
- Brute force algorithm is O(N4log(N))

# datapoints

« Smart implementations use triangle inequality
to rule out candidate pairs

* Best known algorithm is O(N?)
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