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Examples of natural processes

» Physics (Fluid mechanics), astrophysics, chemistry,
climatology,...

» Environmental sciences (river modeling, Volcano plume )

» Biology: (Tissue growth ), pattern on animal skins, cells,
Organs

» Ecosystems: competition between species, ant behavior,
equilibrium between forest and savanna, propagation of
epidemia,...

» Finance, social sciences, traflic, pedestrian motion,..

> ...



What is a model?
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What is a model?

Many possible definitions:
» Simplified abstraction of reality, allowing us to better describe
and understand it
» An abstraction in which only the essential ingredients are
retained, according to the question we ask about the system.
» It is the respresentation of a phenomena in a mathematical or
computer-based language,



Computational Science

Many skills are needed to build a new model, to run it and
analyze its results.

» Computational Science is an emerging, multidisciplinary
domain, based on the idea of *computational thinking”.

» A computer-based description offers a new language, a new
methodology to address scientific challenges, far beyond the
scope of traditional numerical methods, and in fields where
these classical approaches hardly apply.



Computational Science

» Modeling and simulation is a central part of computational
sciences. It 1s a response to the new questions scientists want
to solve, resulting from the avalanche of new experimental
data, and the need to integrate many processes together rather
than specializing in one single problem.

» A computational scientists needs to be a physisict, a
mathematician, a computer scientist, a biologist, an
economists...



Why a model? What is a good model?

Why a model?

» Describe, classify, but mostly
» Understand
» Predict

» Control a phenomena

What is a good model?

It depends on the question. Several models may be necessary for
studying different aspects of the same phenomena

Fuverything should be made as simple as possible but not
simpler

A Einstein



Level of reality

The same system can be described at different scales, and different
methods apply depending on the scale one is interested in:

» atoms, molecules, fluid elements, pressure field, climat
» cells, tissues, organs, living beings

» mechanical parts, cars, traffic

» One has to identify the important ingredients and their mutual
interactions.

» Often, one defined a model at finer scale than the scale at
which we ask a question.



Several models/ different language of description

Partial differential equation for a fluid;

1
du+ (u-Viu= —EVp + vV?u

phenomena — PDE— discretisation — numerical solution




...to a virtual model of reality

One considers a discrete universe as an abstraction of the real
word

phenomena — computer model

Collision | Propagation

» Mesoscopic Rule describing the phenomena
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Example of modeling method

» N-body systems, molecular dynamics

» Mathematical equations, ODE, PDE

» Monte-Carlo methods (equilibrium, dynamic, kinetic)
» Cellular Automata and Lattice Boltzmann methods
» Multi-agents systems

» Discrete Events simulation

» Complex networks

11



From a model to a simulation

» Once a model is specified, one need to program it, to run it
(many times) and to study the results.

» [t is a numerical experiment in computer based virtual
universe

» One need to understand computer programs, software
engineering, algorithms, data-structures, hardware (parallel
machines, GPUs), code optimization, data-analysis.
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From a model to a simulation

» The program needs to be verified (did we really implemented
the model?)

» The model should be validated (run benchmarks with known
results).

» One need enough knowledge of the phenomena to judge if its
predictions are acceptable in new situations.
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From a model to a simulation: illustration
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Space and time

» Natural processes occurs in space and evolve over time
(spatially extended dynamical systems).

» For instance the atmospheric temperature is different from one
place to another, and changes over time.

» Also, a car on a road changes position as time goes on.

» Sometime one is only interested in the time evolution of a
quantity, regardless of the spatial location (e.g the number of
individuals) in a population

» Sometime, a process is stationary (no time evolution). Then

only the spatial variations are of interest (e.g temperature in a
room, in the middle or near the windows).
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Time evolution

» To capture the temporal dimensions in a model, there are
several ways:

» Time takes any real values (as physics suggests). Only
mathematical models can deal with this approach (differential
equations)

» Otherwise, the duration of the process is broken up in small
time intervals At and one describes the state of the system at
cach of these time-step ¢ty =0, t; = At,...,t, = nAt.. ..

» The time is discretized, but the process is followed
continuously over its duration.
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Time evolution

» Alternatively, we can only focus on the interesting moments of
& Process

» In a queue in front of a post office booth, one can simply
consider the time at which a remarkable event occurs. For
instance a new customer enters, or a previous one is done.

» The time ¢ at which an event occurs can be any real value.

» The time is not discretized but the evolution ot the system is
broken up according to events.

» This 1s the so-called Discrete-Event-Simulation (DES)
approach

17



Time evolution
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Modeling space: Eurelian approach

To include the spatial dimensions in a model, there are also
different ways.
» One can take the point of view of an observer who sits at a
fixed position & in space and records what he sees.
» For instance the local atmospheric pressure p(Z,t).
» Or the number of cars that passed by every minute.

» This i1s the so-called Eulerian approach: attach a property of
the system at each spatial locations.

» Space can be continuous (mathematical models) or discretized
in cells, forming a mesh covering the region of interest.
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Modeling space: Lagrangian approach

» Alternatively, one can give the position of all the objects ot
interest, as a function of time.

» For instance the movement of the Moon is described by its
trajectory Z(t), where Z is a continuous variable.

» In a traffic model, one can give the positions over time of all
the cars.

» This is the so-called Lagrangian approach: the observer take
the point ot view of the moving objects.

20



Modeling space
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Beyond the physical space: complex networks

» In many systems, it 1s not so much the exact spatial positions
of the components of a system that matters

» [t is rather whether these components see each others, or can
interact.

» This is typically the case in social systems. Two persons can be
very far away but still interact a lot by phone or other means

» For instance, the agent in an economical model can be
represented as a graph (or a complex network): an edge
connects pairs of agents that exchange information, money,

g00ds, ..
» Obviously, such a graph can be dynamical: creation of new
links or destruction of old ones.
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A model of opinion propagation

/
|
.\\
@ =
O
O o .3 m o ©
O .o

-

in a social network

-y -
-
. .
. - "o
-
> .. -
.
=1 1
. .
. .. .
- -
- " . .
- .o P ‘e . *e.0
. . L e *Ne o n
. . vt AT Y
.. - > LT
L L 1 -
L X .,
v- - » - -~ .
. - .. ‘e .. e
® .
\ -N
. S ns ..'.t
N . N
> e . . * ..o,
'.. .. » 'o.. o.» o..‘c s
» »

“s, .. ,.00..' . fag Bl
............. s e anr s e
.. ’ . .y L Al 1
e, sy, LIS A ‘a e,
*a'0 ., Pt ¥ o Be
ol ey . ol T
L, . . = .-

..
'

Résca aléatoire. N = 1), p= 005, £ =03

23



Complex networks

» Dynamical systems on complex networks is a fast developing
field

» Graph topology imposes a rich “spatial” structure which
constrains the dynamics

» Many quantities characterize the graph topology and can be
related to some global properties of the system: degree
distribution, clustering coefficient, centrality measures,
assortativity, etc.
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Monte Carlo methods

» The goal of Monte-Carlo methods is the sampling of a process in order to
determine some statistical properties

» For instance, we toss a coin 4 times. What is the probability to obtain 3
tail and 1 head?

» Mathematics gives us the solution:

P(3 head) = ( é ) (%)3 (1 - %)1 :%

» But we could also do a simulation

25



A Monte Carlo computer simulation

from random import randint
success=0

attempts=10000
for i in range(attempts):
if randint(0,1)+randint(0,1)+randint(0,1)+randint(0,1)==3:
success+=1

print "Number of attempts=", attempts
print "Number of success=", success

We get for instance:

Number of attempts= 10000
Number of success= 2559

26



A more difficult problem

» For the coin tossing problem, no need for a simulation

» But we can think of other problems for which probability
theory could hardly be applied

» For instance: what is the average duration of the card game
called “war” (or battle)?

The war card game with 52 cards

simulation of a Battaille card game

[
=]

no of cards of player 1

i
|

]
-

9
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Historical note

» The method was name in the 1940s by John von Neumann, Stanislaw
Ulam and Nicholas Metropolis after the name of the Monte-Carlo
casino, where Ulam’s uncle used to gamble ...and loose his money

» The motivation was to find out the probability that a Canfield solitaire
will finish sucessfully.

» Ulam found it easier to play many Canfield solitaires and estimate the
number of successes, rather than trying to apply combinatorics and
probability theory.

» Then the Monte-Carlo methods was successfully applied to the
Manhattan project (nuclear weapon) in the Los Alamos National
Laboratory.

28



Markov-chain Monte Carlo (MCMC)

» We consider a stochastic process whose goal 1s to explore the state space
of a system of interest.

» Let 2 be a point in this state space. Let us asssume that this point moves
across the space by jumping randomly to another point z’.

» The jump from location z to location z’ takes place with probability
W, . This advanced the system time from ¢ to ¢ + 1 (Markov chain)

o/
» We want this process to sample a
prescribed probability p(¢, x). This * %
stochastic process should be at :f.
point x at time ¢ with a probability )
p(t, x).

» How do we choose W7
p x exp(—E(x)/kpT)

29



Sampling the diffusion equation in 1D

The probability that our random exportation is at location x at
time £ 18

» Let us consider a 1D discrete space: x € Z.

» where one can move to the right with probability W., to the
lett with probability W_ and stay still with probability Wj.

» The equation for p(t, x) simplifies to

p(t+1,z) =p(t,z — D)W, +p(t,2)Wo + p(t,x + 1)W_

30
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Diffusion equation in 1D

The diffusion equation is O;p = Dd*p
Which can be discretized as

p(t + At,x) = p(t,x) + 2%5 (p(t,z —1) = 2p(t,z) + p(t,x + 1))

to be compared with

plt+1,2)=plt,z — V)W, + p(t,z)Wy + p(t,z + 1)W
In order to have p = p, one need W. = W_ = AtD/(Az)* and
Wo=1-2AtD/(Az)*> =1~ W, — W_, and thus AtD/(Azr)? < 1/2

Therefore a random walk is a way to sample a density p that obeys the
diffusion equation.

With a random walk, 1t 1s easy to add obstacles, or aggregation
processes, hard to include in the differential equation.
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More general case: Master equation

The probability to find the random exploration at location z at time £ is
p(t, z) given by

p(t+1,z) = Zp(.i::r’)ﬂf;:; -

- Z I}(ta TF)I’LI,L’—}.L + p[f ;?3) [@fm_}w

' Fax

= Y pt, 2 Wome +p(t2)(1 =) W)
:1‘:"#1.‘ :r’#m

= p(t,2) + D [P YWarm = plt, )W

x'F#x
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Detailed balance

In a steady state, the condition p(z) = p(x) requires that

S (&) Waroye — p(@)Waesa] = 0
x'Ex

We can then choose W, _,,» according to the detailed balance condition

P YWy o — p(x)Wosyr = 0
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Metropolis Rule

Let us consider a physical system at equilibrium whose probability to be in
state = is given by the Maxwell-Boltzmann distribution

p(z) = Uexp(—E(z)/kT)

We can sample this distribution with a stochastic process by choosing W, _, .
according to the Metropolis rule:

W B 1 si " < E
e exp[—(E' — E)/kT) si E' > E

34



Metropolis Rule in practice

» In a gas, one selects one particle at random.

» One moves it by an amount Az, o
» One computes the energy E’ of the gas with this o/
new position.
» One accepts this change if o %
L
rand(0, 1) < min(1, exp[—(E" — E)/kT)) o®
. . .

» By sampling p with W,_ ... one can compute
average physical properties, such as for instance
the pressure in the gas.
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Metropolis Rule in practice

The Metropolis obeys the detailed balance

Let us assume that £ > E. Detailed balance is obeyed because
p(@)Wsrwr = Texp(—E/kT)expl—(E' — E)/KT]
["exp(—E'/kT)

p(z') x 1
P& )W

And similarly if £/ < F
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Glauber Rule

This is an alternative to the Metropolis rule. W, _,,» is given by
pa’)
p(z) + p(z')

which also clearly obeys detailed balance
With p = TU'exp(—E(xz)/kT), one obtains

exp(—FE'/kT))
exp(—E/kT) + exp(—E"/ET)

Wessar =

Wsr: vl —

37



Kinetic/Dynamic Mote Carlo

Let us consider the chemical equations
k k
A3 B B3 A
They can be written as an ordinary equation
i AN [ k1 ks A
dt B a ky — ko B

Analytical solution

ko Aok — Boks _
Alt) = Ag + By) + o~ (kitha)t
0 = i g o T B+ =

k] AU}{H — B{]k'g 3 ;
B(t) = Ao+ By) — ;~(k1tka)t
() kl—f—kz( ’ 0) k1 + ko §

where Ay and B are the initial concentration of A and B.
When t — oo,

A—Lﬂlx:kkg (Ag+By) B — By = iz (Ao + Bo)
'1

—f—kg kl—l—k'g )



Monte Carlo simulation

1 One defines a time step At, small enough so that kAt et kyAL are
smaller than 1. They are the probabilities that, during A¢, one A
particle get transformed into one B particle, or conversely.

2 One chooses randomly a particle among the N = A(t) + B(t) = const of
them. (In practice one chooses a A particle rand(0,1) < A/(A + B), and
a B particle otherwise.
3a If a A particle was chosen, it is transformed into a B particle provided
rand(0,1) < kyAt. Then A=A~ 1, B=B+ 1.
3b If a B particle was chosen, it is transformed into a A particle, provided
rand(0,1) < koAt. Then A=A+1, B=B — 1.
4 (2) and (3) are repeated N times and the physical time ¢ is incremented
by At: t =t + At
5 One repeats (2)-(4) until £ = £,

39



Monte Carlo simulation

Results

At = 0.02 and k1 = 0.5, ky = 0.8.
The Monte-Carlo simulation fluctuate around analytic solution.
We should average over several runs

40



Gillespie’s algorithm

» Let r; be the rate at which the possible events occur in the system.
1=1,...n.

» For instance, r; = kAB for a reaction A + B — (C

» Let R, = Z}_l r; be the cumulative rates.
» Choose one event £ at random by picking a random number
s = rand(0, 1): One chooses the k which verifies R,_1 < sR,, < Rpy

(probability proportional to rate).

JH1 i H2 LJHSLJ H4 i HS i HG b
i=1 =2 =3 =4 I= =6
5 -

» Execute the selected event (for instance a molecule A and molecule B
disappear to produce a new molecule C').

» Advance time as At = In(1/s")R,*, with s = rand(0, 1).

41



More on Monte Carlo methods

have been invented in the context of the
development of the atomic bomb in the 1940's

are a class of computational algorithms
can be applied to vast ranges of problems
are not a statistical tool

rely on repeated random sampling
provide generally approximate solutions

are used in cases where analytical or numerical
solutions don't exist or are too difficult to implement

can be used by the Lazy Scientist™ even when an
analytical or numerical solution can be implemented

42



Monte Carlo methods

Monte-Carlo methods generally follow the following steps:

1. Determine the statistical properties of possible inputs

2. Generate many sets of possible inputs which follows
the above properties

3. Perform a deterministic calculation with these sets
4. Analyze statistically the results

The error on the results typically decreases as 1/v/N

43



Numerical integration

N

"'\-_‘_\_'_'_,-"

Most problems can be solved by integration

Monte-Carlo integration is the most common application
of Monte-Carlo methods

Basic idea: Do not use a fixed grid, but random points,
because:
1. Curse of dimensionality: a fixed grid in D dimensions
requires NP points
2. The step size must be chosen first

44



Given any arbitrary probability distribution and provided
one is able to sample properly the distribution with a
random variable (i.e., x ~ f(x)), Monte-Carlo simulations

can be used to:

» determine the distribution properties (mean,
variance,...)

» determine confidence intervals, i.e.
P(x > a) = [7° f(x)dx
» determine composition of distributions, i.e. given
P(x), find P(h(x)), h(x) = x2; cos(x) — sin(x); . ..
Note that these are all integrals!

4
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Optimisation problems

Numerical solutions to optimization problems incur the
risk of getting stuck in local minima.

/
\ﬁ%x
Monte-Carlo approach can alleviate the problem by

permitting random exit from the local minimum and find
another, hopefully better minimum

46



Numerical simulations

» Radiation transfer is Google-wise the main
astrophysical application of Monte-Carlo simulations
In astrophysics

» In particle physics and high-energy astrophysics,
many more physical processes can be simulated

Some physical processes are discretized and random by
nature, so Monte-Carlo is particularly adapted

47



Numerical simulations

GEANT4 is also used to determine the performance of
X-ray and gamma-ray detectors for astrophysics




Example: probability estimation

Head vs tail probability

What is the probability to obtain either 3, 6 or 9 heads if
one draws a coin ten times?
» Binomial probability:
P =B(3;10,0.5)+B(6;10,0.5)+B(9;10,0.5) ~ 0.33
» Monte-Carlo simulation:

1. Given a random variable y ~ 14(0, 1), define “head” if
Yy < 0.5, “tail” otherwise

2. Draw 10 random variables x; ~ 44(0,1), i =1,...,10
3. Count the number of heads H, and increment T if
H=3.6,0r9

4. Repeat 2.-3. N times, with N reasonably large
5. The probability is approximately T /N

» Note that this is an integration on a probability
distribution, even if it is discrete!

49



Example: error estimation

What is the uncertainty on the mean?

Assuming N random variables x; ~ N (0,0), i=1,..., N,
the estimator of the meanis: x = N=' S/ x; and its
uncertainty is:
ozx = o/VN

The Monte-Carlo way:

1. Draw a set of N random variables

Yi~N(0,0), i=1,...,N
2. Calculate the sample mean y = N~ ZjL Vi

3. Redo 1.-2. M times
4. The uncertainty on the mean o3 is the root mean
squareof y;, j=1.....M, ie.
_ _ A2 A _ _
of =M1 (7 - 9)" with y = M~ S,
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Example: numerical integration

How to calculate 77

1. Draw N point (x, y) uniformly at random in a square
2. Count the C points for which x2 + y2 < 1
3. The ratio C/N converges towards = /4 as N/2

51



Random numer generators

Basic principles

» We want to draw many random variables
N; ~U(0,1), 1 =1,... which satisfy (or approximate
sufficiently well) all randomness properties

» N; ~ U(0,1), Vi is not sufficient. We also want that
f(Ni.N;....)¥i,j,... has also the right properties

» Correlations in k-space are often found with a bad
random-number generators

» Another issue is the period of the generator

» The ran () function in 1ibc has been (very) bad.
Do not use this function in applications when good
randomness is needed says man 3 rand
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Random numer generators

Basic algorithm

» Many random number generators are based on the
recurrence relation:

Niy1 = a-Nj+ ¢ (mod m)

These are called linear congruential generators. c is
actually useless.

» “Divide” by m + 1 to get a number in the range [0; 1]

» Choices of a. min standard libraries are found to
range from very bad to relatively good

» A “minimal standard” setis a =7°> = 16807, ¢ = 0,
m =231 _ 1 =2147483647. This is RANO

» Note that the period is at most m
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Random numer generators

Improvements on RANO

1.

Multiplication by a doesn’'t span the whole range of
values, i.e. if N; = 10=°, N;_1 < 0.016, failing a
simple statistical test

» Swap consecutive output values: Generate a few

values (~ 32), and at each new call pick one at
random. This is RAN1

. The period m = 23! — 1 might be too short

» Add the outcome of two RAN1 generators with
(slightly) different m’'s (and a's). The period is the
least common multiple of my and ms ~ 2 - 10'®. This
is RANZ2

. The generator is too slow

» Use in Cinline N; 4 = 1664525 - N; + 1013904223
using unsigned long. Patch the bits into a real
number (machine dependent). This is HFANQD?2
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Implementations and recommendations

NR: Numerical Recipes
GSL: GNU Scientific Library

Random numer generators

Library | Generator | Relative speed | Period
NR RANO 1.0 ~ 231
NR RAN 1 1.3 ~ 236
NR RAN2 2.0 ~ 262
NR RANQD2 0.25 230
GSL MT19937 0.8 019937
GSL TAUS 0.6 ~ 288
GSL RANLXD2 8.0 ~~ 2400

Always use GSL! See the GSL doc for the many more

algorithms available

55



Transformation method

The method

The transformation method allows in principle to draw
values at random from any distribution

LT 1 -
deviate in

{h

1. Given a distribution p(y), the cumulative distribution
function (CDF) of p(y) is F(y) = H p(w) dw

2. We want to draw y uniformly in the shaded area, i.e.
uniformly over F(y); by construction 0 < F(y) < 1,

3. We draw x ~ U(0,1) and find y so that x = F(y)
4. Therefore y(x) = F~'(x), x ~U(0.1)

56



Transformation method

Example

Exponential deviates: p(y) = Ae™

Fly)=1—eV =x

Y(x) = —%111(1 — X)

Note: this is equivalent to

:
y(X) = —+In(x).
since, if x ~4(0,1), then 1 — x ~ /(0, 1) as well

Note also that it is rather uncommon to be able to
calculate F~1(x) analytically. Depending on accuracy, it is
possible to calculate an numerical approximation
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Transformation method

A point in space

To draw a point in a homogeneous sphere of radius R:
1. ¢ can be drawn uniformly from 2£(0, 2m)
2. 6 has a sine distribution p(#) = sin(#)/2, 6 < [0; 7|
Transformation: f/ = 2 arccos(x)

3. Each radius shell has a volume f(R) ~ R? dR, so
H X 3‘:,,.,.-'*?
4. Alternatively, draw a point at random on the surface
of a sphere (x, y,2)//X2 + y2 + z2 with
X, Yy, Z~N(0,1) 58




Rejection method

The method
If the CDF of p(x) is difficult to estimate (and you can

forget about inversion), the rejection method can be used

A

first random
deviatein - —

-+l

second random
devinte in

=101

] Yo

1. Find a comparison function f(x) that can be
sampled, so that f(x) = p(x), ¥x

Draw a random deviate xp from f(x)

Draw a uniform random deviate yp from 44(0, f(Xg))
If Vo < p(xp), accept xp, otherwise discard it

5. Repeat 2.—4. until you have enough values

The rejection method can be very inefficient if f(x) is very
different from p(x) 59
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Rejection method

Example
1
[__- - --:u.:'l-_p_l___
I "F 4 3
The Poisson distribution is discrete: P(n;, o) = “n,ﬁ_ﬂ

Make it continuous:

alx]l g—

P(x, o) = X

A Lorentzian f(x) o {x_a1]2+.::2 IS a good comparison
function
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Rejection method

A point in space

A simpler way to draw a point in a homogeneous sphere
of radius R based on rejection:

1. Draw three random variables x, y, z from U (—HR. R)

2. Keep if x? +~ y? + z2 < R?, reject otherwise

3. Repeat 1.-2. until you have enough values
Efficiency is %% /2% ~ 0.52
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Distributions

GNU Scientific Library implements (not exhaustive!):

Gaussian Binomial
Correlated bivariate Gaussian Poisson
Exponential

Laplace

Cauchy Spherical 2D, 3D
Rayleigh

Landau

Log-normal

Gamma, beta

X2, F t
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Quasi-random numbers

What is random?

.o
.......
¥

All sets of points fill “randomly” the area [[0; 1]; [0; 1]]

The left and center images are “sub-random” and fill more
uniformly the area

These sequences are also called low-discrepancy
sequences

These sequences can be used to replace the RNG when

X ~U(a,b)is needed
63
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Quasi-random numbers

Examples of algorithms

» Sobol’s sequence: Count in binary, but using Gray
code and put a radix in front: 0.1, 0.11, 0.01, 0.011,
0.001, 0.101, O.111, ...

This can be generalized to N dimensions
This is the red set of points

» Halton's sequence: H(/) is constructed the following
way: take / expressed in a (small) prime-number
base b (say b= 3),e.q. i =17 = 122 (base 3).
Reverse the digits and put a radix in front, i.e.
H(17) = 0.221 (base 3) ~ 0.92593
This is generalized to N dimensions by choosing
different b’s in each dimension
This is the blue set of points
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Quasi-random numbers

Accuracy

fractiomal aceuracy of infesral
=
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Convergence in some cases of numerical integration can
reach ~ 1/N
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BONUS slides: For more

mathematically oriented students

Follow the course/slides from
M. Chrzaszcz , Lectures on Monte Carlo methods, ETH Zurich
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Monte Carlo methods: more maths

Monte Carlo method is any technique that uses random numbers to solve a given
mathematical problem.

— Random number: For the purpose of this course we need to assume that we know
what it i1s, although the formal definition is highly non-trivial.

= (Halton 1970). more complicated, but more accurate.

"Representing the solution of a problem as a parameter of a hypothetical population,

and using a random sequence of numbers to construct a sample of the population,
from which statistical estimates of the parameter can be obtained.”

To put this definition in mathematical language:
Let I be a solution of a given mathematical problem. The estimate of the result I

-'-f' — f({lr].-: ?121 ?131 e T'ﬂ,}; )

where {ry,7r2,73, ..., 7, } are random numbers.
The problem we are solving doesn’t need to be stochastic!

— One could wonder why are we trying to add all the stochastic properties to a deterministic

problem. Those are the properties that allow to use all well known statistic theorems.
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Applications of MC methods

= Application of a MC method doesn’t depend on the stochastic
nature of the problem, but only on ability to represent a problem by a
given hypothetical population so we can apply random numbers in
that problem.

= For example the calculations made in Los Alamos are so-called
direct simulation. They really simulated neutron transportation in the
material. The solutions are again to a non deterministic problem.
Clearly 2 atomic bombs have equal energies...

=> The nature of the problem can be probabilistic, in which case we
are performing so-called direct MC simulation. However when we are
simulating not directly the problem but rather an abstract population
we are using indirect MC method.

= The application of a given method will depend only of
mathematical structure of the problem.
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Euler number determination

= As mentioned before MC methods can be used to solve problems that do not
have stochastic nature! All the integrals calculated in Los Alamos during the
Manhattan project are nowadays solvable without any MC methods.

— Let’s give a trivial example of solving @ non stochastic problem: calculating Euler
number e. We know that ¢ = 2.7182818.... = To calculate the ¢ we will use the
following algorithm:

® We generate a random number in range (0, 1) (in stat. (0, 1)) until the number
we generate Is smaller then the previous one, aka we get the following sequence:

r1 < T2 <..<XTn_1>Tn

® We store the number n. We repeat this experiment /N times and calculate the
arithmetic average of n. The obtained value Is an statistical estimator of e:

- .Nr
" 1 N —oo
S _,gT\_T n; —— €,

i=1
N é e—e
100 2.760000  0.041718
= Numerical example: 10000  2.725000  0.006718 s this ~ v/ N?

1000000  2.718891  0.000609
100000000  2.718328  0.000046
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Let’s test the VN

= In the last example we measured the Euler number using different
number of pseudo-experiments.

— We compared the obtained value to the true and observed roughly
a \/iT dependence on the difference between the true value and the
obtained one.

— Could we test this? YES! Lets put our experimentalist hat on!

— From the begging of studies they tooth us to get the error you
need to repeat the measurements.

The algorithm:

Previous time we measured Euler number using IV events, where
N € (100, 1000, 10000, 100000). Now lets repeat this measurement

npy times (of course each time we use new generated numbers). From
the distribution of € — e we could say something about the
uncertainty of our estimator for given V.

72



Let’s test the VN

— Could we test this? YES! Lets put our experimentalist hat on!
— From the begging of studies they tooth us to get the error you
need to repeat the measurements.
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Let’s test the VN

— Could we test this? YES! Lets put our experimentalist hat on!
— From the begging of studies they tooth us to get the error you
need to repeat the measurements.

Graph
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Mathematical foundations of MC methods

= All MC methods are mathematically equal to a integral estimator

= For simplicity lets assume that r; are numbers from (0, 1).
= The MC result:
F = F(ri,ro,...,71y)

Is an unbias estimator of the integral:

1 1
1 —/ / F(xy,...,xE)dry...dry,
0 0
, or the expected value of F'is I:
E(F)=1

—> This formal identity gives us the theoretical tool for application of
the MC methods.
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Mathematical foundations of MC methods

A random number 1s a number that can take more then one value

(usually takes the values from continuum) and non of it's value can be
predicted before hand.

= Even thought we cannot predict the random number we can
predict it's probability. = For the continuous variables we define a
Probability Density Function (PDF):

p(u)du = Plu < v’ < u+ dul,

where p(u) is the PDF.
= Cumulative Distribution Function (CDF):

Rw= [ pwar, ol ="

= The R(u) is monotonically non decreasing function and takes the
value in [0, 1].

76



Mathematical foundations of MC methods

= The expected value of a function f(x) is defined as an average of

the function
— [ fwdr) = [ fpudu

= If x € U(a, D) then:

dR = bduﬂ E(f)= b— / f(u)du

— The variation is defined as:
V() = E(S = EGOP) = [If = EGHPAR

— The Standard deviation:

o(f) =y V()

= In practice we give the standard deviation not the varaition as it's

the same dimension as measured quantities.
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Mathematical foundations of MC methods

— For 2 random variables we define:

E(cx +y) = cE(z) + E(y)
V(ex +y) = AV (x) + V(y) + 2cCov(x,y), (0

where Cov(x,y) = E([x — E(x)]ly — E(y)]) is called the covariance.

r
=0 x.,y uncorrelated

cov(x,y) =< >0 x,y correlated

< 0 x,y anticorrelated
%

= If x,y are independent then cov(z,y) = 0 and

V(r+y) =V(r) +V(y)

=> If variables are independent then they are uncorrelated. If they are
uncorrelated then can still be dependent .
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Law of large numbers

The law of large numbers (LLN): let’s take n numbers from U(a, b) and
for each of them we calculate the f(u;). The LLN:

%if(ui) N L

= We say (in statistic terminology) that the left side is asymptotically
equivalent to the value of the integration if n — oc.
= Assumptions:

e [ is Integrative.
e Smooth in most of the points.

e Limited.

The LLN can be interpreted as the fact the estimator of the

Integration is approaching the true value if the . Is increasing.
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=

=

From LLN:

1 & e 1 b
_Zf(“z') Vo, - U-/a, f(u)du

=1

Mathematical properties of MC estimator:

If V/(f) < oo then estimator is a good estimator, aka it converges
to the true value.

The estimator Is an unbias estimator, aka the expected value Is the

true value.

The estimator has a normal distribution for large n (CLT).

The standard deviation of the estimator:

7= =V
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Monte Carlo and integration

— All MC calculations are equivalent to preforming an integration.
= Assumptions: 7; random numbers from U (0, 1). The MC resuilt:

F=F(ri,r2,...7)

Is unbias estimator of an integral:

1 1
I—/ / F(xy,x2, ..., 2, )dxy, dxs... dz)y
0 0

aka the expected value of the I integral is:

B(F)=1.

= This mathematical identity is the most useful property of the MC methods. It is a

link between mathematical analysis and statistic world. Now we can use the best of
the both world!

If we want to calculate the integral in different range then (0, 1) we just scale the the
previous result:

N

| b
h—er(:ri-) N—=oo, E(f) = b—l a-/ f(z)dx

i=1
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Uncertainty from MC methods

= In practice we do not have N — oo so we will never know the exact result of an
integral :(

—— Let’s use the statistical world and estimate the uncertainty of an integral in this
case :)

— A variance of a MC integral:

= In practice V(1) is calculated via estimator:

V(i) =Lv(), V(f) = @) -3 @]

= MC estimator of standard deviation: 6 = y/ 1(I)
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Buffon needle — Tt number calculus

= Buffon needle (Buffon 1777, Laplace 1886): We are throwing a needle (of length [)
on to a surface covered with parallel lines width distance L. If a thrown needle
touches a line we count a hit, else miss. Knowing the number of hits and misses one
can calculate the m number.

Experiment: Theory:
= x - angle between needle and horizontal line,

x € U(0, ). = the probability density function
(p.d.f.) for x:

p(r) = %

Y _/'ﬂi
I AX - : . .
/“ 1 = p(x) probability to hit a line for a given x value:

[
plz) = 7| cosal

1 - number of hits
N number of hits and misses,

aka number of tries. = Total hit probability:

P = Elp(z)] = / p(x)plx)de = 2+
" . oo i i I'|"
Now one can calculate I from MC : PP = o Noeo, P A = T = 2V
N 7L nlL
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Buffon needle — simples Carlo method

Monte Carlo type "hit or miss”
Let's use the summery of p(x) function and stake 0 < = < 3.

= Algorithm:

Generate 2 dim. distribution: Mishit

(z,y) : U(0, g) x U(0, 1) and

y {g p(x): hit,

= p(x): miss.

Let's define weight function: w(x,y) = O(p(x) — y),
where O(x) is the step function.

— p.d.f: p(z,y) = p(x)gly) = 2 - 1
= Integrated probability:

N
2l Now £ 1 n
P =E(w) = f“lta‘(:ny)g(&ny)dafdy =7 P== " wm,y) = N

Standard deviation for P: 6 = # n (1 _ E)
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Head and tails Monte Carlo

= estimator of an integral that is based on counting the numbers
of positive trials compared to the failed ones is called "hit or miss”

= The probability is described by the Bernoulli distribution:

where P is the probability of success, N is the number of trials and n
Is the number of successes.
= The following are true:

E(n)= NP,
V(n)=NP(1—-P),
= Translating this into probability basis:

E(P)=P, V(P)= P“; P)
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Buffon needle

=> Lets make this toy experiment and calculate the m number.
— We can simulate the central position (7) of an needle between (—L. L)

from U(—L.L).

Symmetry:

Please note the symmetry of the problem, if the position of the needle would
be > L then we can shift the needle by any number of L’s.

— New we simulate the angle (¢) with a flat distribution from (0. 7). < The
maximum and minimum ¥ position of the needle are:

Ymax = Y + | cos ¢l
Ymin — Y — |'CE'S (j)l'!

— Now we check if the needle touches any of the lines: y = L, y =0 or

y = —L. If yes we count the events.
N T T — o(7)
10000  3.12317  —0.01842  0.03047
100000  3.14707  0.00547  0.00979
1000000  3.13682  —0.00477  0.00307

10000000 3.14096 —0.00063 0.00097
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Crude Monte Carlo method of integration

= Crude Monte Carlo method of integration is based on Law of Large Numbers:

%Zf(ra) M_}DG /f(i)d*r— ()

= The standard deviation can be calculated:

\/}\/ B(2) — B2()]

T =

= From LNT we have:

ﬂ-fz & i 1 ‘M
[ 2 2l N 1
P = /u(.r)p )dx _,/; (E coa:r);da =7 N E_l w(x;)

= Important comparison between "Hit and mishit” and Crude MC methods. One can
analytically calculate:

-~ Crude ~ Hit and mishit
o < 0
= Crude MC i1s always better then "Hit and mishit” method. We will prove this on an

example (can be proven analytically as well).
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Crude vs , hits or miss”

= The Crude MC is never worse then the "hit or miss” method.
= Prove: Let's assume we calculate an integral:

1
I :/ flx)dr, and 0 < f(x) < 1 Vx e (0,1)
0

— The variation for the "hit-or-miss”(HM) method: V (I 7a1) = ir(f — I?) = The

variation for the crude method: V' (L:;mde = ,\T I f r)dr — 12] = Now the

difference:

V(iar) = V(leruae) = / ()] = / f@)[1 - f@)]dz > 0 g.ed

= E2.3 Calculate the following integrals with uncertainties using "hit or miss” and
crude methods:
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Generalization to multi-dimension case. Crude method

= Let x = (x1,x2, ...,z )- vector in the n-dim vector space R".
() C'R"™ - some subspace In the n-dim space.
V = (Q2) - volume of the €2 subspaces.

I = / flx)dx = V/ f(x)dz/V = V/ f(x)dp(x) = VJ = VE(f),
LY 0 0

where the MC estimator:

N
J = % Z_; f(z), 2 eU(Q)

—. The standard deviation:

22®) — LS fo)
\/N(N sz -y ;f(()

— In the end we get:

I=VJ, 6(I)=Vo(J)
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Generalization to multi-dimension case. , Hits or miss”

= Let x = (1,72, ..., Tn)- vector in the n-dim vector space R".
() C'R™ - some subspace In the n-dim space.
V = () - volume of the (2 subspaces.

fma.z meI
I_/dr/ dyO(f(x) — —mem/drf fdy O(f(z) —y)

where (z,y) € U(2 x [0, frnax]. = Now we define K:

. fmaxz
k= [T [T et - = @
0 0 mar

= We generator: (z,y) € U(2 X [0, finaz]) and check:

(< f(x)hit, weight=]
Y7\ > f(2)hit, weight=0

—. In the end:

K)

[ = fracVK. J(I) fmm 6(K)
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Crude MC vs , Hits or miss”

= We can repeat a toy MC studies as we did in the Euler needle case.

/2

— In this example we want to calculate [, '~ cos zdx

HT_100 C_100
HT_100 _ C_100
L o Ertiries 1000 _ Entrias 1000
C Maan 0.99a3 60 Mean 1
B RMS OLOT424 o AMS 0.04301
| o I 2334726 sobE- ©inm 43331 F
L Constant B3AT £ 334 - Constant 5505+ 235
- Maan 09578 + 0.0024 E Mean 1.001 + 0.002
- SgMa_ 0.0V276 + DLODHTE anl— Signa 0047 £ 000120
el r
C -
- o
C a0
e | S
L Nn 10
ol N 0 ] Lot 1 |
1. 2 13 [} iE] ] T 5] T T3
HT_1000
HT_1000 - C_1000
r Ertiries 1000 0 1000
F Maan 0.0980 F [.0997
o RMS 002456 E 0.01456
o ¥ et 2093061 L 36.5/40
F Constant 7998 + 138 E 53194242
aal- hizan [L9575 + 0.000% s 0.5999 + 0.0005
o SigMa 002344 + D.0007 E D.D1467 & 0.00040
r |
) F
- N F
E i xE
mf- o
F 2
10 E
B 1]
il C 1 .n | | L n | o | |
N a5 1105 5] ] 11
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Crude MC vs , Hits or miss”

= We can repeat a toy MC studies as we did in the Euler needle case.

/2

— In this example we want to calculate |,

HT_10000
HT 10000
Erires 1000
Rean 1
RME o.oor3o8
i in 5475 /80

Constant
Mean
Sigma

3536+ 1.64
=00
0006533 + 0.000153

HT_100000
HT_100000
Erries 1000
Mean
RME 00245
1 ine E=ERE
Constant 8L 143

Sigma

=00
0002474 + 0.000070

cos rdxr

C_10000
C_ 10000
r Eniries 000
r Mdman D
— FnE D.D047TT2
o o indt ]
r Canstant EEOEs 238
F Mdman 1 00
Sigma 0004554 + 0000122

€_100000

C 100000
E Eninez 0w
_F Mean
S s noo1s4E
E o inE 267038
s Constant EE4BE2
o Lizan 1200
= Sgma [L.O045E3 + 0.00003S
=0
aE
-
1o
[:'_ 1 1 1
[WE=E] VR 1 1.005% 101
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Crude MC vs , Hits or miss”

= We can repeat a toy MC studies as we did in the Euler needle case.

. T [ 2
— In this example we want to calculate |, /2 cos vda

Graph Graph
Qe 3 I ndf 116413 2 ndf 25073
o pl  0.7205 + 0.01005 oosl- B0 047530008143
0.07 %
= E o,
.06 \ 04 \
osf C
E 003 hY
— r ™,
ook C N
0osE- 02~ \
il oy . C ’\x
E ~— oo .
0o C
gh L L T 0 L L N
1 10t 0 10 i 10 0 1

= One clearly sees that both methods follow 1/v/N dependence and
that the Crude MC is always better then the "Hit and mishit”.

= Please note that for the "Hit and mishit” we are suing 2 times more
random numbers than for the Crude method so in terms of timing the

Crude MC is also much faster.
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Classical methods of variance reduction

= In Monte Carlo methods the statistical uncertainty is defined as:

1
VN

T =

Vi(f)

= Obvious conclusion:

® To reduce the uncertainty one needs to increase V.

— Slow convergence. In order to reduce the error by factor of 10 one needs to
simulate factor of 100 more points!

= How ever the other handle (V' ( f)) can be changed' — Lot’s of theoretical effort
goes Into reducing this factor.

= We will discuss four classical methods of variance reduction:
1. Stratified sampling.

2. Importance sampling.

3. Control variates.

4. Antithetic variates.
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Stratified sampling

= The most intuitive method of variance reduction. The idea behind it is to divide
the function in different ranges and to use the Riemann integral property:

I = / flu)du = fﬂ f(tL)dquf flu)du, 0 < a < 1.

=> The reason for this method is that in smaller ranges the integration function is
more flat. And it’s trivial to see that the more flatter you get the smaller uncertainty.
— A constant function would have zero uncertainty!

General schematic:

Let’s take our integration domain and divide it in smaller domains. In the j%* domain

with the volume w; we simulate n; points from uniform distribution. We sum the
function values in each of the simulated points for each of the domain. Finally we
sum them with weights proportional to w; and anti-proportional to n;.
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Stratified sampling — mathematical details

Let's define our integrals and domains:

k
I'= /f(:r)d;l’, Q=1 )w;

The integral over j** domain:

k
Ij:/ f(x)dz, :>I:ZL;

j j=1
— p; uniform distribution in the w; domain: dp; = %.
J
— The integral is calculated based on crude MC method. The estimator is equal:
7j
W
[; = — E f(z5)
n; <
=1
Now the total integral is just a sum:
k k 4
_E:A_E:'wa (2)
=1 i | . =1

W

w? w? .
Variance: V (1) = Z;f:l Z—JVJ(f) and it's estimator: V() = Zk u—JVJ(f)
j j
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Stratified sampling in practice

One can show that splitting the integration region €2 into equal regions will not
increase the variance!

= For example in case of two sub samples:

V(Ieruae) — V(Iss) [/ 1l .T)diﬂ‘/ flx)dx

Practical advise:

—2
>0

If we know very little about the integrating function the equal splitting of the {2 space
is the best option!
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Stratified sampling for the Buffon needle

= Lets apply our Stratified sampling to my favourite :) Buffon needle with 5 samples.

1P(x) = We have w; = Q2/5 = i and n; = i
C . . )
09 = The integral estimator:
0DaF
u.‘ri— 1 5 N/5 1 N
06" D Iy — .
SES) WEIEES gt
" j=1 i=1 i=1
:z: — The standard deviation (for [ = L):
n.1;— 1 2 3 4 . 0.34 . 1.52
T ¥ R T R B TRV Y X o(T)ss = 7% < o(T)Crude = ﬁ

= In the following example we generated a constant number of events (N /5) for
each subsample independently of their impact on the integral.

= We can improve this by generating events in each of the sub sample accordingly to
the area of the blue rectangle.

= E2.4 Using the Stratified Sampling please calculate the integrals from E2.3 by
dividing the are into 5 samples. Compute the errors and compare them to the ones
obtained from the Crude method.
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Importance sampling

= If the function is changing rapidly in its domain one needs to use a more elegant
method: make the function more stable.

— The solution is from first course of mathematical analysis: change the integration
variable )

dG (x)

flx)dz — f(z) dG(x), where g(x) = .

g(r)

Schematic:
Generate the distribution from G(z) instead of Y.

For each generate point calculate the weight: w(z) =

We calculate the expected value E(iu) and its variance ﬂ’g(ﬂ:) for the whole

sample.

® |f g(x) is choose correctly the resulting variance can be much smaller.

® There are some mathematical requirements:
o g(x) needs to be non-negative and analytically integrable on its

domain.

o G(x) invertible or there should be a direct generator of ¢ distribution
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Importance sampling - Example

=> Let’s take our good old m determination example.

= Let's take here for simplicity: L = [.

® |et's take a trivial linear weight function: e
4 2 - —a(x)
g(r)=—(1— zx) bl —w(x)

, . i ) C —p)
® |t's invertible analytically: G(z) = 22(1 — Z) o8

® The weight function: o5t
plx) T COST Mé_
glz) 41—2z/w | NN T

w(r) =

® Now the new standard deviation 1s smaller:
IS 0.41 1.52

Op = <
v N

® |mportance sampling has advantages:
o Big improvements of variance reduction.
o The only method that can cope with singularities.
=> Calculate the first function from E2.3 using the importance sampling. As a weight

function ¢g(x) take a linear function.
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Control variates

= Control variates uses an other nice property of Riemann integral:

/f(:r)d:{f: /[f(r) — g(z)|dx + /g(:r)d;rr

® g(x) needs to be analytically integrable.

® The uncertainty comes only from the integral: f[f(:r) — g(x)]dz.

® Obviously: V(f — ¢g) I=9.
= Advantages:

® (Quite stable, immune to the singularities.

® g(x) doesn’t need to be invertible analytically.
= Disadvantage:
® Useful only if you know fg(;r)d:{f
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Antithetic variates

= In MC methods usually one uses the independent random variables. The Antithetic
variates method on purpose uses a set of correlated variables (negative correlation is
the important property):

® let f and f7 will be functions of x on the same domain.

® The variance: V(f + f1) =V ([f) + V(f1) +2Cou(f, f1).
e If Cou(f, fr) < 0 then you can reduce the variance.

= Advantages:

® |f you can pick up f and f/ so that they have negative correlation one can
significantly reduce the variance!

=> Disadvantages:
® There are no general methods to produce such a negative correlations.
® Hard to generalize this for multidimensional case.

® You can't generate events from f(x) with this method.
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= To sum up:

We discussed basic mathematical properties of MC methods.

We shown that besides the stochastic nature of MC they can be used to
determine totally non stochastic quantities.

We demonstrated there Is a perfect isomorphism between MC method and
integration.

We learned how co calculate integrals and estimate the uncertainties.

Finally we discussed several classical methods of variance reduction.
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Classical methods of variance reduction

= In Monte Carlo methods the statistical uncertainty is defined as:

_ L
7= = VV()

— Obvious conclusion:

® To reduce the uncertainty one needs to increase NN.
— Slow convergence. In order to reduce the error by factor of 10 one needs to
simulate factor of 100 more points!

= How ever the other handle (V' (f)) can be changed' — Lot’s of theoretical effort
goes into reducing this factor.

= We will discuss four classical methods of variance reduction:
1. Stratified sampling.

2. Importance sampling.

3. Control variates.

4. Antithetic variates.
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Disadvantages of classical variance reduction methods

= All aforementioned methods(beside the Stratified sampling) require knowledge of
the integration function!

= If you use the method in the incorrect way, you can easily get the opposite effect
than intendant.

= Successful application of then require non negligible effort before running the
program.

= A natural solution would be that our program is "smart” enough that on his own,
he will learn something about our function while he is trying to calculate the integral.
= Similar techniques were already created for numerical integration!

= Truly adaptive methods are nontrivial to code but are widely available in external
packages as we will learn.

= Naming conventions:

® Integration MC- software that is able to compute JUST! integrals.

® Generator MC- software that BESIDES! beeing able to perform the integration is
also capable of performing a generation of points accordingly to the integration
function.

LO6



Schematic of running this kind of methods

1. Function probing (exploration):

o Recursive algorithm that searches for hipper-surfaces in which the
function is approximately close. For evaluation of an integral in a given
hipper-surface normally one uses numerical or MC crude methods. In
general it Is not an easy task!

o Often the function is approximated by a given set of elementary
functions.

2. Calculation phase

o The integral is calculated using mostly using Stratified Sampling and
Importance Sampling, depending on exploration phase.

o |f a MC program has capabllity to generated distributions accordingly
to the function of which we want to calculate the integral, it's in this
place where it happens.

=> There are algorithms where the exploration phase is linked with calculation phase.

For each of the optimisation phase the integral is calculated as well. The result will be
weighted average of those integrals!

This method might be bias! if in the extrapolation phase the algorithm picks up a

function peaks to late the whole method will lead to systematically bias results.
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VEGAS algorithm

= J. G. P. Lepage (1978): adaptive algorithm for MC integration based on iterative
division of the integration area (similar to RIWID).

= Let's calculate: fﬂl f(x)dz.

® We generate M random points from U(0, 1). We calculate from them the integral
and standard deviation.

® Now we divide the integration region in N equal subdivisions:
O=ao <1 <2< ... < Xn=1, Ae =x; — i1
® Now each of this subdivisions we divide further into m; + 1 subsubdivisions.
m; = K f“éI% ., W = const. typically = 1000
Zj fjAIj
and

f= Y @5 f | f(@)lda

r€[xi_1,7i) i—1

= The new subsubareas will be "denser” where the function is greater and less
dens where the function i1s smaller.
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VEGAS algorithm

® We are are retrieving back the original number (N) of the subdivisions by glueing
together equal amount subsubdivisions.
= The new subdivisions will be larger where the function is larger and vice versa.

® We generate the M points accordingly to the stop function probability:
1
p(‘i) _ N&.Tg‘

and calculate the integral Stratified sampling.

® We repeat the procedure until we find an optimum division:
m; ~mji,j=1,.. N.

® |n each iteration we calculate the weighted average:
Iy

93
a
k ke

where [, and o, are the integral and error in the k interaction.

® After the procedure stop we calculate the final results:
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VEGAS algorithm — futher improvements

= In order to make the integrating area more stable(can happen that the division
jumps around very rapidity). We can modify the algorithm:

_ 1
D f;Az; - l] log [ﬁ.&;ﬁ/ > fj:ﬁ:ﬂj]

m; = IX

where « € [1, 2] sets the convergence speed. = When function has narrow peaks the
I, and o1, might be wrongly calculated in early stages of iteraction. To fix this we can:

-[sd] T @) [

k k k

5

= If the number of interactions is to large then you cannot trust the algorithm!
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VEGAS algorithm — 2D case

= Lets take for example fol dx f; dy f(x,vy).
— We can do a trick:

p(r.y) = p=(x)py(y)

= One can show that using Lagrange multipliers that the optimum density has the

form of:
\/ f y L2 (@)
Y py(y)

Py U)

pz(x) =

= So our 1D algorithm can be used to each of the axis (ex. for x axis):

PN SR o< U By gy

rC[zi_1,Ti) Y

= In analogous you do it for y axis.
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VEGAS algorithm — an

example

= An example of usage: let’s calculate:

) T 1 J o = 2
I, = ( 1 ) / exp (zn — 0.5) ]dn:r =1
a\/m Jo a?
= Forthen =9, a=0.1anda =1
lteration 15 Ok I o(l) Number of calculations
1 0.007 0.005 | 0.007 0.005 10*
3 0.643  0.070 | 0.612 0.064 3.10%
5 1.009 0.041 | 0.963 0.034 5-10%
10 1.003  0.041 | 1.003 0.005 10°
Crude MC method 0.843  0.360 10°
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FOAM algorithm

— SJadach (2000), arXiv:physics/9910004, Comp. Phys. Commun. 152 (2003) 55.
Adaptive method with recursive division of the integration domain in cells.
= There are two algorithms in dividing the integration domain:

® Symplectic: Cells are sympleces(hiper-triangles). This method can be applied to
not so large number of dimensions. (< 5).

® Qubic: Cells are hiper-cubes. This might be applied in higher number dimensions.
(< 20).

= The algorithm:

® Exploration phase:
The integration domain (hipper-cube) is divided recursively into cells. In each step
only one cell is split. The splitting is not event! The procedure is stop when the
number of cells reach a certain number that is set by us. One constructs an
approximation function and based on this the integral is calculated.

® Generation/Calculation Phase:
We generate random points accordingly to the distribution of approximation
function and the integral is calculated using the Importance sampling based on
the approximation function.
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FOAM algorithm

[ Build—up of the foam of cells]

Split root cell if necessary
Choose next cell for the split ..., ;

L
MC exploration of the cell

Generate series of MC events inside a cell
Choose best direction (division edge)

Find out best division ratio (division plane)

------------------------------------------------------------------------------

Generate MC event

Choose randomly a cell

Choose randomly a point inside a cell

= )
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FOAM algorithm
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Monte Carlo vs numerical methods

= All numerical methods are based on evaluating the integral using linear
combination of function:

Iq =~ily wi f(x;)

=> Different methods have different weights w; and lattice point z;.
= Efficiency of Monte Carlo methods compared to the numerical ones:

Standard deviation 1D nD
Monte Carlo n—1/2 n—1/2
Trapezoidal Rule n=? n—2/d
Simpson Rule n=? n2/4
m-point Gauss rule | n= 2™ | p=2™/4
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= In one dimension the Monte Carlo method is substantially slower then the
numerical methods! Even the most simple ones.

= In many dimensions the Monte Carlo methods rapidity gain the advantages!
= For d > 4 the MC method if faster then the Trapezoidal Rule.

= For d > 8 the MC method if faster then the Simpson Rule.

= The disadvantages of the numerical methods:

® Hard to apply in multi dimensions.
® Hard to apply in complex integration domains.

® The integration uncertainties are hard to evaluate.
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Random and pseudorandom numbers

John von Neumann:

"Any one who considers arithmetical methods of producing random
digits Is, of course, Iin a state of sin. For, as has been pointed out
several times, there i1s no such thing as a random number — there are

only methods to produce random numbers, and a strict arithmetic
procedure of course Is not such a method.”

= Random number: a given value that is taken by a random variable
—» by definition cannot be predicted.

—=> Sources of truly random numbers:

* Mechanical

e Physical

= Disadvantages of physical generators:

e TJo slow for typical applications, especially the mechanical ones!

e Not stable; small changes in boundary conditions might lead to
completely different results!
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Random numbers = history remark

= In the past there were books with random numbers:

= It's obvious that they didn’t become very popular ;)

= This methods are comming back!

—» Storage device are getting more cheap and bigger (CD, DVD).

— 1995: G. Marsaglia, 650MB of random numbers, "White and Black
Noise”.
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Pseudorandom numbers

Commercially available physical generators of random numbers are usually based on
electronic noise. This kind of generators do not pass simple statistical tests! Before
you use them check they statistical properties.

= Pseudorandom numbers- numbers generated accordingly to strict mathematical
formula.

=> Strictly speaking they are non random numbers, how ever they have all the
statistical properties of random numbers.

= How ever modern generators are so good that no one can distinguish the pseudo
random numbers generated by then from true random numbers.

=> Mathematical methods of producing pseudorandom numbers:

® (Good statistical properties of generated numbers.
® Easy to use and fast!
® Reproducible!

= Because of those properties the truelly random numbers are not used in practice
any more!
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General schematic

= Typical MC generator layout:
e We choose initial constants: X, X1, ... Xr_;.

® The & number If calculated based on the previous ones:

X = f(Xos oo Xeo1),

= Typically one generates 0/1 which are then converted towards double
precision numbers with 2/(0, 1).
=> Generator period (P, [ integer numbers): P Is the period:

dip: Xi=Xirjp Ve Visi

= In post of the cases the period can be calculated analytically, although this
Is sometimes not trivial.

=> There Is a recommendation about the period of a generator. For NV
numbers we usually require:

NP

= In practice: N < P?/3 is oki ;)
=> For example a generator "Mersenne Twister” (Matsumoto, Nishimura,
1998): P ~ 10999, 121



Linear generators

= General equation:

% where a;, c, m are parameters of a generator(integer numbers).
% Generator Initialization = setting those parameters.
= Very old generators. (often used in Pascal, or first C versions):
k=1: X, =(aX,_1+ ¢) modm,
. { 0. multiplicative geneator

# (), mix geneator
= The period can be achieved by tuning the seed parameters
(multiplicative) :

2L=2. for m = 2L
Pma}c — ] .
m — 1: for m = prime number
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Linear generators

= Some simple linear generators and their periods:

a c m Name/author
216 + 3 0 231 RANDU
22.237 + 1 0 235 Zielinski (1966)
69069 1 232 Marsaglia (1972)
16807 0| 23 —1 | Park, Miller (1980)
10692 0 | 231 —249 | L Ecuyer (1988)
68909602460261 | 0 948 Fishman (1990)

= m - prime number — better statistical properties. = There are some quid lines
how to choose the parameters to make the period larger.

The periods of 232 ~ 4 - 10? are not good enough for modern applications!

Remember that in practice N < P?/3!

=> Simple linear generators do not pass newer statistical tests!
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Linear generators

= Marsaglia (1995) generators:

X, = (1176 X, 1 + 1476 X,,_o + 1776 X,,_3) mod m, m = 2°* —5
2. X, =28 (X1 + Xpo + X,3) mod m, m = 232 _ 5

3. X, = (1995X,,1 + 1998 X .5 + 2001.X,.3)modm. m = 2°°849

4. X, =2¥%(Xpn1 + Xn2 + Xn3)modm, m = 2321629

= P =m” — 1 = They got surprisingly good statistical properties! = The main
disadvantage is that multidimensional distributions look very suspicious:

Ui=Xi/m, i=1,2... = U;(0,1)
(Lrla UQ: Uk): (LTQ'J U3:| Uk—Fl)? “'(Uls [”IQ: reey [’Ik)r (Uk-|—1:| LIIC-I—Q: reey [”'T?k)g

are being located on a resurfaces in a hiper-cube [0, 1]]*.
= Using Fourier analysis one can find the distances between the hiper-surfaces.
= Generalization for multiple dimensions:

X, = Afn_l mod m,
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RANLUX generator

= All described generators are based on some mathematical algorithms and
recursion. The typical scheme is of constructing a MC generator:

® Think of a formula that takes some Initial values.

® Generate large number of random numbers and put them through
statistical tests.

® [f the test are positive we accept the the generator.

= Now let’s think: why the hell numbers obtained that way are showing some
random number properties? There is no science behind it, it's pure luck!

= M.Luscher (1993) hep-lat/9309020

= Generator RANLUX based on Kolomogorow entropy and Lyapunov
exponent. Effectively we are building inside the generator the chaos theory.
— RANLUX and Mersenne Twister (TRandom]l, TRandom3) are the 2 most
powerful generators in the world that passed every known statistical test.
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=> Things to remember:

Computer cannot produce random numbers, only pseudorandom
numbers.

We use pseudorandon numbers as random numbers If they are
statistically acting the same as random numbers.

Linear generators are not commonly used nowadays.

State of the art generators are the ones based on Kolomogorows theorem.
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